1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
// Copyright 2014 The Prometheus Authors
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.

use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::From;
use std::sync::{
    atomic::{AtomicU64 as StdAtomicU64, Ordering},
    Arc, Mutex,
};
use std::time::{Duration, Instant as StdInstant};

use crate::atomic64::{Atomic, AtomicF64, AtomicU64};
use crate::desc::{Desc, Describer};
use crate::errors::{Error, Result};
use crate::metrics::{Collector, LocalMetric, Metric, Opts};
use crate::proto;
use crate::value::make_label_pairs;
use crate::vec::{MetricVec, MetricVecBuilder};

/// The default [`Histogram`] buckets. The default buckets are
/// tailored to broadly measure the response time (in seconds) of a
/// network service. Most likely, however, you will be required to define
/// buckets customized to your use case.
pub const DEFAULT_BUCKETS: &[f64; 11] = &[
    0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0,
];

/// Used for the label that defines the upper bound of a
/// bucket of a histogram ("le" -> "less or equal").
pub const BUCKET_LABEL: &str = "le";

#[inline]
fn check_bucket_label(label: &str) -> Result<()> {
    if label == BUCKET_LABEL {
        return Err(Error::Msg(
            "`le` is not allowed as label name in histograms".to_owned(),
        ));
    }

    Ok(())
}

fn check_and_adjust_buckets(mut buckets: Vec<f64>) -> Result<Vec<f64>> {
    if buckets.is_empty() {
        buckets = Vec::from(DEFAULT_BUCKETS as &'static [f64]);
    }

    for (i, upper_bound) in buckets.iter().enumerate() {
        if i < (buckets.len() - 1) && *upper_bound >= buckets[i + 1] {
            return Err(Error::Msg(format!(
                "histogram buckets must be in increasing \
                 order: {} >= {}",
                upper_bound,
                buckets[i + 1]
            )));
        }
    }

    let tail = *buckets.last().unwrap();
    if tail.is_sign_positive() && tail.is_infinite() {
        // The +Inf bucket is implicit. Remove it here.
        buckets.pop();
    }

    Ok(buckets)
}

/// A struct that bundles the options for creating a [`Histogram`] metric. It is
/// mandatory to set Name and Help to a non-empty string. All other fields are
/// optional and can safely be left at their zero value.
#[derive(Clone, Debug)]
pub struct HistogramOpts {
    /// A container holding various options.
    pub common_opts: Opts,

    /// Defines the buckets into which observations are counted. Each
    /// element in the slice is the upper inclusive bound of a bucket. The
    /// values must be sorted in strictly increasing order. There is no need
    /// to add a highest bucket with +Inf bound, it will be added
    /// implicitly. The default value is DefBuckets.
    pub buckets: Vec<f64>,
}

impl HistogramOpts {
    /// Create a [`HistogramOpts`] with the `name` and `help` arguments.
    pub fn new<S1: Into<String>, S2: Into<String>>(name: S1, help: S2) -> HistogramOpts {
        HistogramOpts {
            common_opts: Opts::new(name, help),
            buckets: Vec::from(DEFAULT_BUCKETS as &'static [f64]),
        }
    }

    /// `namespace` sets the namespace.
    pub fn namespace<S: Into<String>>(mut self, namespace: S) -> Self {
        self.common_opts.namespace = namespace.into();
        self
    }

    /// `subsystem` sets the sub system.
    pub fn subsystem<S: Into<String>>(mut self, subsystem: S) -> Self {
        self.common_opts.subsystem = subsystem.into();
        self
    }

    /// `const_labels` sets the const labels.
    pub fn const_labels(mut self, const_labels: HashMap<String, String>) -> Self {
        self.common_opts = self.common_opts.const_labels(const_labels);
        self
    }

    /// `const_label` adds a const label.
    pub fn const_label<S1: Into<String>, S2: Into<String>>(mut self, name: S1, value: S2) -> Self {
        self.common_opts = self.common_opts.const_label(name, value);
        self
    }

    /// `variable_labels` sets the variable labels.
    pub fn variable_labels(mut self, variable_labels: Vec<String>) -> Self {
        self.common_opts = self.common_opts.variable_labels(variable_labels);
        self
    }

    /// `variable_label` adds a variable label.
    pub fn variable_label<S: Into<String>>(mut self, name: S) -> Self {
        self.common_opts = self.common_opts.variable_label(name);
        self
    }

    /// `fq_name` returns the fq_name.
    pub fn fq_name(&self) -> String {
        self.common_opts.fq_name()
    }

    /// `buckets` set the buckets.
    pub fn buckets(mut self, buckets: Vec<f64>) -> Self {
        self.buckets = buckets;
        self
    }
}

impl Describer for HistogramOpts {
    fn describe(&self) -> Result<Desc> {
        self.common_opts.describe()
    }
}

impl From<Opts> for HistogramOpts {
    fn from(opts: Opts) -> HistogramOpts {
        HistogramOpts {
            common_opts: opts,
            buckets: Vec::from(DEFAULT_BUCKETS as &'static [f64]),
        }
    }
}

/// Representation of a hot or cold shard.
///
/// See [`HistogramCore`] for details.
#[derive(Debug)]
struct Shard {
    sum: AtomicF64,
    count: AtomicU64,
    buckets: Vec<AtomicU64>,
}

impl Shard {
    fn new(num_buckets: usize) -> Self {
        let mut buckets = Vec::new();
        for _ in 0..num_buckets {
            buckets.push(AtomicU64::new(0));
        }

        Shard {
            sum: AtomicF64::new(0.0),
            count: AtomicU64::new(0),
            buckets,
        }
    }
}

/// Index into an array of [`Shard`]s.
///
/// Used in conjunction with [`ShardAndCount`] below.
#[derive(Debug, Clone, Copy)]
enum ShardIndex {
    /// First index. Corresponds to 0.
    First,
    /// Second index. Corresponds to 1.
    Second,
}

impl ShardIndex {
    /// Inverse the given [`ShardIndex`].
    fn inverse(self) -> ShardIndex {
        match self {
            ShardIndex::First => ShardIndex::Second,
            ShardIndex::Second => ShardIndex::First,
        }
    }
}

impl From<u64> for ShardIndex {
    fn from(index: u64) -> Self {
        match index {
            0 => ShardIndex::First,
            1 => ShardIndex::Second,
            _ => panic!(
                "Invalid shard index {:?}. A histogram only has two shards.",
                index
            ),
        }
    }
}

impl From<ShardIndex> for usize {
    fn from(index: ShardIndex) -> Self {
        match index {
            ShardIndex::First => 0,
            ShardIndex::Second => 1,
        }
    }
}

/// An atomic u64 with the most significant used as a [`ShardIndex`] and the
/// remaining 63 bits used to count [`Histogram`] observations.
#[derive(Debug)]
struct ShardAndCount {
    inner: StdAtomicU64,
}

impl ShardAndCount {
    /// Return a new [`ShardAndCount`] with both the most significant bit
    /// i.e. the `ShardIndex` and the remaining 63 bit i.e. the observation
    /// count set to 0.
    fn new() -> Self {
        ShardAndCount {
            inner: StdAtomicU64::new(0),
        }
    }

    /// Flip the most significant bit i.e. the [`ShardIndex`] leaving the
    /// remaining 63 bits unchanged.
    fn flip(&self, ordering: Ordering) -> (ShardIndex, u64) {
        let n = self.inner.fetch_add(1 << 63, ordering);

        ShardAndCount::split_shard_index_and_count(n)
    }

    /// Get the most significant bit i.e. the [`ShardIndex`] as well as the
    /// remaining 63 bits i.e. the observation count.
    fn get(&self) -> (ShardIndex, u64) {
        let n = self.inner.load(Ordering::Relaxed);

        ShardAndCount::split_shard_index_and_count(n)
    }

    /// Increment the observation count leaving the most significant bit i.e.
    /// the [`ShardIndex`] untouched.
    fn inc_by(&self, delta: u64, ordering: Ordering) -> (ShardIndex, u64) {
        let n = self.inner.fetch_add(delta, ordering);

        ShardAndCount::split_shard_index_and_count(n)
    }

    /// Increment the observation count by one leaving the most significant bit
    /// i.e. the [`ShardIndex`] untouched.
    fn inc(&self, ordering: Ordering) -> (ShardIndex, u64) {
        self.inc_by(1, ordering)
    }

    fn split_shard_index_and_count(n: u64) -> (ShardIndex, u64) {
        let shard = n >> 63;
        let count = n & ((1 << 63) - 1);

        (shard.into(), count)
    }
}

/// Core datastructure of a Prometheus histogram
///
/// # Atomicity across collects
///
/// A histogram supports two main execution paths:
///
/// 1. `observe` which increases the overall observation counter, updates the
/// observation sum and increases a single bucket counter.
///
/// 2. `proto` (aka. collecting the metric, from now on referred to as the
/// collect operation) which snapshots the state of the histogram and exposes it
/// as a Protobuf struct.
///
/// If an observe and a collect operation interleave, the latter could be
/// exposing a snapshot of the histogram that does not uphold all histogram
/// invariants. For example for the invariant that the overall observation
/// counter should equal the sum of all bucket counters: Say that an `observe`
/// increases the overall counter but before updating a specific bucket counter
/// a collect operation snapshots the histogram.
///
/// The below implementation of `HistogramCore` prevents such race conditions by
/// using two shards, one hot shard for `observe` operations to record their
/// observation and one cold shard for collect operations to collect a
/// consistent snapshot of the histogram.
///
/// `observe` operations hit the hot shard and record their observation. Collect
/// operations switch hot and cold, wait for all `observe` calls to finish on
/// the previously hot now cold shard and then expose the consistent snapshot.
#[derive(Debug)]
pub struct HistogramCore {
    desc: Desc,
    label_pairs: Vec<proto::LabelPair>,

    /// Mutual exclusion to serialize collect operations. No two collect
    /// operations should operate on this datastructure at the same time. (See
    /// struct documentation for details.) `observe` operations can operate in
    /// parallel without holding this lock.
    collect_lock: Mutex<()>,

    /// An atomic u64 where the first bit determines the currently hot shard and
    /// the remaining 63 bits determine the overall count.
    shard_and_count: ShardAndCount,
    /// The two shards where `shard_and_count` determines which one is the hot
    /// and which one the cold at any given point in time.
    shards: [Shard; 2],

    upper_bounds: Vec<f64>,
}

impl HistogramCore {
    pub fn new(opts: &HistogramOpts, label_values: &[&str]) -> Result<HistogramCore> {
        let desc = opts.describe()?;

        for name in &desc.variable_labels {
            check_bucket_label(name)?;
        }
        for pair in &desc.const_label_pairs {
            check_bucket_label(pair.get_name())?;
        }

        let label_pairs = make_label_pairs(&desc, label_values)?;

        let buckets = check_and_adjust_buckets(opts.buckets.clone())?;

        Ok(HistogramCore {
            desc,
            label_pairs,

            collect_lock: Mutex::new(()),

            shard_and_count: ShardAndCount::new(),
            shards: [Shard::new(buckets.len()), Shard::new(buckets.len())],

            upper_bounds: buckets,
        })
    }

    /// Record a given observation (f64) in the histogram.
    //
    // First increase the overall observation counter and thus learn which shard
    // is the current hot shard. Subsequently on the hot shard update the
    // corresponding bucket count, adjust the shard's sum and finally increase
    // the shard's count.
    pub fn observe(&self, v: f64) {
        // The collect code path uses `self.shard_and_count` and
        // `self.shards[x].count` to ensure not to collect data from a shard
        // while observe calls are still operating on it.
        //
        // To ensure the above, this `inc` needs to use `Acquire` ordering to
        // force anything below this line to stay below it.
        let (shard_index, _count) = self.shard_and_count.inc(Ordering::Acquire);

        let shard: &Shard = &self.shards[usize::from(shard_index)];

        // Try find the bucket.
        let mut iter = self
            .upper_bounds
            .iter()
            .enumerate()
            .filter(|&(_, f)| v <= *f);
        if let Some((i, _)) = iter.next() {
            shard.buckets[i].inc_by(1);
        }

        shard.sum.inc_by(v);
        // Use `Release` ordering to ensure all operations above stay above.
        shard.count.inc_by_with_ordering(1, Ordering::Release);
    }

    /// Make a snapshot of the current histogram state exposed as a Protobuf
    /// struct.
    //
    // Acquire the collect lock, switch the hot and the cold shard, wait for all
    // remaining `observe` calls to finish on the previously hot now cold shard,
    // snapshot the data, update the now hot shard and reset the cold shard.
    pub fn proto(&self) -> proto::Histogram {
        let collect_guard = self.collect_lock.lock().expect("Lock poisoned");

        // `flip` needs to use AcqRel ordering to ensure the lock operation
        // above stays above and the histogram operations (especially the shard
        // resets) below stay below.
        let (cold_shard_index, overall_count) = self.shard_and_count.flip(Ordering::AcqRel);

        let cold_shard = &self.shards[usize::from(cold_shard_index)];
        let hot_shard = &self.shards[usize::from(cold_shard_index.inverse())];

        // Wait for all currently active `observe` calls on the now cold shard
        // to finish. The above call to `flip` redirects all future `observe`
        // calls to the other previously cold, now hot, shard. Thus once the
        // cold shard counter equals the value of the global counter when the
        // shards were flipped, all in-progress `observe` calls are done. With
        // all of them done, the cold shard is now in a consistent state.
        //
        // `observe` uses `Release` ordering. `compare_and_swap` needs to use
        // `Acquire` ordering to ensure that (1) one sees all the previous
        // `observe` stores to the counter and (2) to ensure the below shard
        // modifications happen after this point, thus the shard is not modified
        // by any `observe` operations.
        while overall_count
            != cold_shard.count.compare_and_swap(
                overall_count,
                // While at it, reset cold shard count on success.
                0,
                Ordering::Acquire,
            )
        {}

        // Get cold shard sum and reset to 0.
        //
        // Use `Acquire` for load and `Release` for store to ensure not to
        // interfere with previous or upcoming collect calls.
        let cold_shard_sum = cold_shard.sum.swap(0.0, Ordering::AcqRel);

        let mut h = proto::Histogram::default();
        h.set_sample_sum(cold_shard_sum);
        h.set_sample_count(overall_count);

        let mut cumulative_count = 0;
        let mut buckets = Vec::with_capacity(self.upper_bounds.len());
        for (i, upper_bound) in self.upper_bounds.iter().enumerate() {
            // Reset the cold shard and update the hot shard.
            //
            // Use `Acquire` for load and `Release` for store to ensure not to
            // interfere with previous or upcoming collect calls.
            let cold_bucket_count = cold_shard.buckets[i].swap(0, Ordering::AcqRel);
            hot_shard.buckets[i].inc_by(cold_bucket_count);

            cumulative_count += cold_bucket_count;
            let mut b = proto::Bucket::default();
            b.set_cumulative_count(cumulative_count);
            b.set_upper_bound(*upper_bound);
            buckets.push(b);
        }
        h.set_bucket(from_vec!(buckets));

        // Update the hot shard.
        hot_shard.count.inc_by(overall_count);
        hot_shard.sum.inc_by(cold_shard_sum);

        drop(collect_guard);

        h
    }

    fn sample_sum(&self) -> f64 {
        // Make sure to not overlap with any collect calls, as they might flip
        // the hot and cold shards.
        let _guard = self.collect_lock.lock().expect("Lock poisoned");

        let (shard_index, _count) = self.shard_and_count.get();
        self.shards[shard_index as usize].sum.get()
    }

    fn sample_count(&self) -> u64 {
        self.shard_and_count.get().1
    }
}

// We have to wrap libc::timespec in order to implement std::fmt::Debug.
#[cfg(all(feature = "nightly", target_os = "linux"))]
pub struct Timespec(libc::timespec);

#[cfg(all(feature = "nightly", target_os = "linux"))]
impl std::fmt::Debug for Timespec {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "Timespec {{ tv_sec: {}, tv_nsec: {} }}",
            self.0.tv_sec, self.0.tv_nsec
        )
    }
}

#[derive(Debug)]
pub enum Instant {
    Monotonic(StdInstant),
    #[cfg(all(feature = "nightly", target_os = "linux"))]
    MonotonicCoarse(Timespec),
}

impl Instant {
    pub fn now() -> Instant {
        Instant::Monotonic(StdInstant::now())
    }

    #[cfg(all(feature = "nightly", target_os = "linux"))]
    pub fn now_coarse() -> Instant {
        Instant::MonotonicCoarse(get_time_coarse())
    }

    #[cfg(all(feature = "nightly", not(target_os = "linux")))]
    pub fn now_coarse() -> Instant {
        Instant::Monotonic(StdInstant::now())
    }

    pub fn elapsed(&self) -> Duration {
        match &*self {
            Instant::Monotonic(i) => i.elapsed(),

            // It is different from `Instant::Monotonic`, the resolution here is millisecond.
            // The processors in an SMP system do not start all at exactly the same time
            // and therefore the timer registers are typically running at an offset.
            // Use millisecond resolution for ignoring the error.
            // See more: https://linux.die.net/man/2/clock_gettime
            #[cfg(all(feature = "nightly", target_os = "linux"))]
            Instant::MonotonicCoarse(t) => {
                let now = get_time_coarse();
                let now_ms = now.0.tv_sec * MILLIS_PER_SEC + now.0.tv_nsec / NANOS_PER_MILLI;
                let t_ms = t.0.tv_sec * MILLIS_PER_SEC + t.0.tv_nsec / NANOS_PER_MILLI;
                let dur = now_ms - t_ms;
                if dur >= 0 {
                    Duration::from_millis(dur as u64)
                } else {
                    Duration::from_millis(0)
                }
            }
        }
    }

    #[inline]
    pub fn elapsed_sec(&self) -> f64 {
        duration_to_seconds(self.elapsed())
    }
}

#[cfg(all(feature = "nightly", target_os = "linux"))]
use self::coarse::*;

#[cfg(all(feature = "nightly", target_os = "linux"))]
mod coarse {
    use crate::histogram::Timespec;
    pub use libc::timespec;
    use libc::{clock_gettime, CLOCK_MONOTONIC_COARSE};

    pub const NANOS_PER_MILLI: i64 = 1_000_000;
    pub const MILLIS_PER_SEC: i64 = 1_000;

    pub fn get_time_coarse() -> Timespec {
        let mut t = Timespec(timespec {
            tv_sec: 0,
            tv_nsec: 0,
        });
        assert_eq!(
            unsafe { clock_gettime(CLOCK_MONOTONIC_COARSE, &mut t.0) },
            0
        );
        t
    }
}

/// Timer to measure and record the duration of an event.
///
/// This timer can be stopped and observed at most once, either automatically (when it
/// goes out of scope) or manually.
/// Alternatively, it can be manually stopped and discarded in order to not record its value.
#[must_use = "Timer should be kept in a variable otherwise it cannot observe duration"]
#[derive(Debug)]
pub struct HistogramTimer {
    /// A histogram for automatic recording of observations.
    histogram: Histogram,
    /// Whether the timer has already been observed once.
    observed: bool,
    /// Starting instant for the timer.
    start: Instant,
}

impl HistogramTimer {
    fn new(histogram: Histogram) -> Self {
        Self {
            histogram,
            observed: false,
            start: Instant::now(),
        }
    }

    #[cfg(feature = "nightly")]
    fn new_coarse(histogram: Histogram) -> Self {
        HistogramTimer {
            histogram,
            observed: false,
            start: Instant::now_coarse(),
        }
    }

    /// Observe and record timer duration (in seconds).
    ///
    /// It observes the floating-point number of seconds elapsed since the timer
    /// started, and it records that value to the attached histogram.
    pub fn observe_duration(self) {
        self.stop_and_record();
    }

    /// Observe, record and return timer duration (in seconds).
    ///
    /// It observes and returns a floating-point number for seconds elapsed since
    /// the timer started, recording that value to the attached histogram.
    pub fn stop_and_record(self) -> f64 {
        let mut timer = self;
        timer.observe(true)
    }

    /// Observe and return timer duration (in seconds).
    ///
    /// It returns a floating-point number of seconds elapsed since the timer started,
    /// without recording to any histogram.
    pub fn stop_and_discard(self) -> f64 {
        let mut timer = self;
        timer.observe(false)
    }

    fn observe(&mut self, record: bool) -> f64 {
        let v = self.start.elapsed_sec();
        self.observed = true;
        if record {
            self.histogram.observe(v);
        }
        v
    }
}

impl Drop for HistogramTimer {
    fn drop(&mut self) {
        if !self.observed {
            self.observe(true);
        }
    }
}

/// A [`Metric`] counts individual observations from an event or sample stream
/// in configurable buckets. Similar to a [`Summary`](crate::proto::Summary),
/// it also provides a sum of observations and an observation count.
///
/// On the Prometheus server, quantiles can be calculated from a [`Histogram`] using
/// the [`histogram_quantile`][1] function in the query language.
///
/// Note that Histograms, in contrast to Summaries, can be aggregated with the
/// Prometheus query language (see [the prometheus documentation][2] for
/// detailed procedures). However, Histograms require the user to pre-define
/// suitable buckets, (see [`linear_buckets`] and [`exponential_buckets`] for
/// some helper provided here) and they are in general less accurate. The
/// Observe method of a [`Histogram`] has a very low performance overhead in
/// comparison with the Observe method of a Summary.
///
/// [1]: https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
/// [2]: https://prometheus.io/docs/practices/histograms/
#[derive(Clone, Debug)]
pub struct Histogram {
    core: Arc<HistogramCore>,
}

impl Histogram {
    /// `with_opts` creates a [`Histogram`] with the `opts` options.
    pub fn with_opts(opts: HistogramOpts) -> Result<Histogram> {
        Histogram::with_opts_and_label_values(&opts, &[])
    }

    fn with_opts_and_label_values(
        opts: &HistogramOpts,
        label_values: &[&str],
    ) -> Result<Histogram> {
        let core = HistogramCore::new(opts, label_values)?;

        Ok(Histogram {
            core: Arc::new(core),
        })
    }
}

impl Histogram {
    /// Add a single observation to the [`Histogram`].
    pub fn observe(&self, v: f64) {
        self.core.observe(v)
    }

    /// Return a [`HistogramTimer`] to track a duration.
    pub fn start_timer(&self) -> HistogramTimer {
        HistogramTimer::new(self.clone())
    }

    /// Return a [`HistogramTimer`] to track a duration.
    /// It is faster but less precise.
    #[cfg(feature = "nightly")]
    pub fn start_coarse_timer(&self) -> HistogramTimer {
        HistogramTimer::new_coarse(self.clone())
    }

    /// Observe execution time of a closure, in second.
    pub fn observe_closure_duration<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Observe execution time of a closure, in second.
    #[cfg(feature = "nightly")]
    pub fn observe_closure_duration_coarse<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now_coarse();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Return a [`LocalHistogram`] for single thread usage.
    pub fn local(&self) -> LocalHistogram {
        LocalHistogram::new(self.clone())
    }

    /// Return accumulated sum of all samples.
    pub fn get_sample_sum(&self) -> f64 {
        self.core.sample_sum()
    }

    /// Return count of all samples.
    pub fn get_sample_count(&self) -> u64 {
        self.core.sample_count()
    }
}

impl Metric for Histogram {
    fn metric(&self) -> proto::Metric {
        let mut m = proto::Metric::default();
        m.set_label(from_vec!(self.core.label_pairs.clone()));

        let h = self.core.proto();
        m.set_histogram(h);

        m
    }
}

impl Collector for Histogram {
    fn desc(&self) -> Vec<&Desc> {
        vec![&self.core.desc]
    }

    fn collect(&self) -> Vec<proto::MetricFamily> {
        let mut m = proto::MetricFamily::default();
        m.set_name(self.core.desc.fq_name.clone());
        m.set_help(self.core.desc.help.clone());
        m.set_field_type(proto::MetricType::HISTOGRAM);
        m.set_metric(from_vec!(vec![self.metric()]));

        vec![m]
    }
}

#[derive(Clone, Debug)]
pub struct HistogramVecBuilder {}

impl MetricVecBuilder for HistogramVecBuilder {
    type M = Histogram;
    type P = HistogramOpts;

    fn build(&self, opts: &HistogramOpts, vals: &[&str]) -> Result<Histogram> {
        Histogram::with_opts_and_label_values(opts, vals)
    }
}

/// A [`Collector`] that bundles a set of Histograms that all share the
/// same [`Desc`], but have different values for their variable labels. This is used
/// if you want to count the same thing partitioned by various dimensions
/// (e.g. HTTP request latencies, partitioned by status code and method).
pub type HistogramVec = MetricVec<HistogramVecBuilder>;

impl HistogramVec {
    /// Create a new [`HistogramVec`] based on the provided
    /// [`HistogramOpts`] and partitioned by the given label names. At least
    /// one label name must be provided.
    pub fn new(opts: HistogramOpts, label_names: &[&str]) -> Result<HistogramVec> {
        let variable_names = label_names.iter().map(|s| (*s).to_owned()).collect();
        let opts = opts.variable_labels(variable_names);
        let metric_vec =
            MetricVec::create(proto::MetricType::HISTOGRAM, HistogramVecBuilder {}, opts)?;

        Ok(metric_vec as HistogramVec)
    }

    /// Return a `LocalHistogramVec` for single thread usage.
    pub fn local(&self) -> LocalHistogramVec {
        let vec = self.clone();
        LocalHistogramVec::new(vec)
    }
}

/// Create `count` buckets, each `width` wide, where the lowest
/// bucket has an upper bound of `start`. The final +Inf bucket is not counted
/// and not included in the returned slice. The returned slice is meant to be
/// used for the Buckets field of [`HistogramOpts`].
///
/// The function returns an error if `count` is zero or `width` is zero or
/// negative.
pub fn linear_buckets(start: f64, width: f64, count: usize) -> Result<Vec<f64>> {
    if count < 1 {
        return Err(Error::Msg(format!(
            "LinearBuckets needs a positive count, count: {}",
            count
        )));
    }
    if width <= 0.0 {
        return Err(Error::Msg(format!(
            "LinearBuckets needs a width greater then 0, width: {}",
            width
        )));
    }

    let buckets: Vec<_> = (0..count)
        .map(|step| start + width * (step as f64))
        .collect();

    Ok(buckets)
}

/// Create `count` buckets, where the lowest bucket has an
/// upper bound of `start` and each following bucket's upper bound is `factor`
/// times the previous bucket's upper bound. The final +Inf bucket is not counted
/// and not included in the returned slice. The returned slice is meant to be
/// used for the Buckets field of [`HistogramOpts`].
///
/// The function returns an error if `count` is zero, if `start` is zero or
/// negative, or if `factor` is less than or equal 1.
pub fn exponential_buckets(start: f64, factor: f64, count: usize) -> Result<Vec<f64>> {
    if count < 1 {
        return Err(Error::Msg(format!(
            "exponential_buckets needs a positive count, count: {}",
            count
        )));
    }
    if start <= 0.0 {
        return Err(Error::Msg(format!(
            "exponential_buckets needs a positive start value, \
             start: {}",
            start
        )));
    }
    if factor <= 1.0 {
        return Err(Error::Msg(format!(
            "exponential_buckets needs a factor greater than 1, \
             factor: {}",
            factor
        )));
    }

    let mut next = start;
    let mut buckets = Vec::with_capacity(count);
    for _ in 0..count {
        buckets.push(next);
        next *= factor;
    }

    Ok(buckets)
}

/// `duration_to_seconds` converts Duration to seconds.
#[inline]
pub fn duration_to_seconds(d: Duration) -> f64 {
    let nanos = f64::from(d.subsec_nanos()) / 1e9;
    d.as_secs() as f64 + nanos
}

#[derive(Clone, Debug)]
pub struct LocalHistogramCore {
    histogram: Histogram,
    counts: Vec<u64>,
    count: u64,
    sum: f64,
}

/// An unsync [`Histogram`].
#[derive(Debug)]
pub struct LocalHistogram {
    core: RefCell<LocalHistogramCore>,
}

impl Clone for LocalHistogram {
    fn clone(&self) -> LocalHistogram {
        let core = self.core.clone();
        let lh = LocalHistogram { core };
        lh.clear();
        lh
    }
}

/// An unsync [`HistogramTimer`].
#[must_use = "Timer should be kept in a variable otherwise it cannot observe duration"]
#[derive(Debug)]
pub struct LocalHistogramTimer {
    /// A local histogram for automatic recording of observations.
    local: LocalHistogram,
    /// Whether the timer has already been observed once.
    observed: bool,
    /// Starting instant for the timer.
    start: Instant,
}

impl LocalHistogramTimer {
    fn new(histogram: LocalHistogram) -> Self {
        Self {
            local: histogram,
            observed: false,
            start: Instant::now(),
        }
    }

    #[cfg(feature = "nightly")]
    fn new_coarse(histogram: LocalHistogram) -> Self {
        Self {
            local: histogram,
            observed: false,
            start: Instant::now_coarse(),
        }
    }

    /// Observe and record timer duration (in seconds).
    ///
    /// It observes the floating-point number of seconds elapsed since the timer
    /// started, and it records that value to the attached histogram.
    pub fn observe_duration(self) {
        self.stop_and_record();
    }

    /// Observe, record and return timer duration (in seconds).
    ///
    /// It observes and returns a floating-point number for seconds elapsed since
    /// the timer started, recording that value to the attached histogram.
    pub fn stop_and_record(self) -> f64 {
        let mut timer = self;
        timer.observe(true)
    }

    /// Observe and return timer duration (in seconds).
    ///
    /// It returns a floating-point number of seconds elapsed since the timer started,
    /// without recording to any histogram.
    pub fn stop_and_discard(self) -> f64 {
        let mut timer = self;
        timer.observe(false)
    }

    fn observe(&mut self, record: bool) -> f64 {
        let v = self.start.elapsed_sec();
        self.observed = true;
        if record {
            self.local.observe(v);
        }
        v
    }
}

impl Drop for LocalHistogramTimer {
    fn drop(&mut self) {
        if !self.observed {
            self.observe(true);
        }
    }
}

impl LocalHistogramCore {
    fn new(histogram: Histogram) -> LocalHistogramCore {
        let counts = vec![0; histogram.core.upper_bounds.len()];

        LocalHistogramCore {
            histogram,
            counts,
            count: 0,
            sum: 0.0,
        }
    }

    pub fn observe(&mut self, v: f64) {
        // Try find the bucket.
        let mut iter = self
            .histogram
            .core
            .upper_bounds
            .iter()
            .enumerate()
            .filter(|&(_, f)| v <= *f);
        if let Some((i, _)) = iter.next() {
            self.counts[i] += 1;
        }

        self.count += 1;
        self.sum += v;
    }

    pub fn clear(&mut self) {
        for v in &mut self.counts {
            *v = 0
        }

        self.count = 0;
        self.sum = 0.0;
    }

    pub fn flush(&mut self) {
        // No cached metric, return.
        if self.count == 0 {
            return;
        }

        {
            // The collect code path uses `self.shard_and_count` and
            // `self.shards[x].count` to ensure not to collect data from a shard
            // while observe calls are still operating on it.
            //
            // To ensure the above, this `inc` needs to use `Acquire` ordering
            // to force anything below this line to stay below it.
            let (shard_index, _count) = self
                .histogram
                .core
                .shard_and_count
                .inc_by(self.count, Ordering::Acquire);
            let shard = &self.histogram.core.shards[shard_index as usize];

            for (i, v) in self.counts.iter().enumerate() {
                if *v > 0 {
                    shard.buckets[i].inc_by(*v);
                }
            }

            shard.sum.inc_by(self.sum);
            // Use `Release` ordering to ensure all operations above stay above.
            shard
                .count
                .inc_by_with_ordering(self.count, Ordering::Release);
        }

        self.clear()
    }

    fn sample_sum(&self) -> f64 {
        self.sum
    }

    fn sample_count(&self) -> u64 {
        self.count
    }
}

impl LocalHistogram {
    fn new(histogram: Histogram) -> LocalHistogram {
        let core = LocalHistogramCore::new(histogram);
        LocalHistogram {
            core: RefCell::new(core),
        }
    }

    /// Add a single observation to the [`Histogram`].
    pub fn observe(&self, v: f64) {
        self.core.borrow_mut().observe(v);
    }

    /// Return a `LocalHistogramTimer` to track a duration.
    pub fn start_timer(&self) -> LocalHistogramTimer {
        LocalHistogramTimer::new(self.clone())
    }

    /// Return a `LocalHistogramTimer` to track a duration.
    /// It is faster but less precise.
    #[cfg(feature = "nightly")]
    pub fn start_coarse_timer(&self) -> LocalHistogramTimer {
        LocalHistogramTimer::new_coarse(self.clone())
    }

    /// Observe execution time of a closure, in second.
    pub fn observe_closure_duration<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Observe execution time of a closure, in second.
    #[cfg(feature = "nightly")]
    pub fn observe_closure_duration_coarse<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now_coarse();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Clear the local metric.
    pub fn clear(&self) {
        self.core.borrow_mut().clear();
    }

    /// Flush the local metrics to the [`Histogram`] metric.
    pub fn flush(&self) {
        self.core.borrow_mut().flush();
    }

    /// Return accumulated sum of local samples.
    pub fn get_sample_sum(&self) -> f64 {
        self.core.borrow().sample_sum()
    }

    /// Return count of local samples.
    pub fn get_sample_count(&self) -> u64 {
        self.core.borrow().sample_count()
    }
}

impl LocalMetric for LocalHistogram {
    /// Flush the local metrics to the [`Histogram`] metric.
    fn flush(&self) {
        LocalHistogram::flush(self);
    }
}

impl Drop for LocalHistogram {
    fn drop(&mut self) {
        self.flush()
    }
}

/// An unsync [`HistogramVec`].
#[derive(Debug)]
pub struct LocalHistogramVec {
    vec: HistogramVec,
    local: HashMap<u64, LocalHistogram>,
}

impl LocalHistogramVec {
    fn new(vec: HistogramVec) -> LocalHistogramVec {
        let local = HashMap::with_capacity(vec.v.children.read().len());
        LocalHistogramVec { vec, local }
    }

    /// Get a [`LocalHistogram`] by label values.
    /// See more [`MetricVec::with_label_values`].
    pub fn with_label_values<'a>(&'a mut self, vals: &[&str]) -> &'a LocalHistogram {
        let hash = self.vec.v.hash_label_values(vals).unwrap();
        let vec = &self.vec;
        self.local
            .entry(hash)
            .or_insert_with(|| vec.with_label_values(vals).local())
    }

    /// Remove a [`LocalHistogram`] by label values.
    /// See more [`MetricVec::remove_label_values`].
    pub fn remove_label_values(&mut self, vals: &[&str]) -> Result<()> {
        let hash = self.vec.v.hash_label_values(vals)?;
        self.local.remove(&hash);
        self.vec.v.delete_label_values(vals)
    }

    /// Flush the local metrics to the [`HistogramVec`] metric.
    pub fn flush(&self) {
        for h in self.local.values() {
            h.flush();
        }
    }
}

impl LocalMetric for LocalHistogramVec {
    /// Flush the local metrics to the [`HistogramVec`] metric.
    fn flush(&self) {
        LocalHistogramVec::flush(self)
    }
}

impl Clone for LocalHistogramVec {
    fn clone(&self) -> LocalHistogramVec {
        LocalHistogramVec::new(self.vec.clone())
    }
}

#[cfg(test)]
mod tests {
    use std::f64::{EPSILON, INFINITY};
    use std::thread;
    use std::time::Duration;

    use super::*;
    use crate::metrics::{Collector, Metric};

    #[test]
    fn test_histogram() {
        let opts = HistogramOpts::new("test1", "test help")
            .const_label("a", "1")
            .const_label("b", "2");
        let histogram = Histogram::with_opts(opts).unwrap();
        histogram.observe(1.0);

        let timer = histogram.start_timer();
        thread::sleep(Duration::from_millis(100));
        timer.observe_duration();

        let timer = histogram.start_timer();
        let handler = thread::spawn(move || {
            let _timer = timer;
            thread::sleep(Duration::from_millis(400));
        });
        assert!(handler.join().is_ok());

        let mut mfs = histogram.collect();
        assert_eq!(mfs.len(), 1);

        let mf = mfs.pop().unwrap();
        let m = mf.get_metric().get(0).unwrap();
        assert_eq!(m.get_label().len(), 2);
        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 3);
        assert!(proto_histogram.get_sample_sum() >= 1.5);
        assert_eq!(proto_histogram.get_bucket().len(), DEFAULT_BUCKETS.len());

        let buckets = vec![1.0, 2.0, 3.0];
        let opts = HistogramOpts::new("test2", "test help").buckets(buckets.clone());
        let histogram = Histogram::with_opts(opts).unwrap();
        let mut mfs = histogram.collect();
        assert_eq!(mfs.len(), 1);

        let mf = mfs.pop().unwrap();
        let m = mf.get_metric().get(0).unwrap();
        assert_eq!(m.get_label().len(), 0);
        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 0);
        assert!((proto_histogram.get_sample_sum() - 0.0) < EPSILON);
        assert_eq!(proto_histogram.get_bucket().len(), buckets.len())
    }

    #[test]
    #[cfg(feature = "nightly")]
    fn test_histogram_coarse_timer() {
        let opts = HistogramOpts::new("test1", "test help");
        let histogram = Histogram::with_opts(opts).unwrap();

        let timer = histogram.start_coarse_timer();
        thread::sleep(Duration::from_millis(100));
        timer.observe_duration();

        let timer = histogram.start_coarse_timer();
        let handler = thread::spawn(move || {
            let _timer = timer;
            thread::sleep(Duration::from_millis(400));
        });
        assert!(handler.join().is_ok());

        histogram.observe_closure_duration(|| {
            thread::sleep(Duration::from_millis(400));
        });

        let mut mfs = histogram.collect();
        assert_eq!(mfs.len(), 1);

        let mf = mfs.pop().unwrap();
        let m = mf.get_metric().get(0).unwrap();
        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 3);
        assert!((proto_histogram.get_sample_sum() - 0.0) > EPSILON);
    }

    #[test]
    #[cfg(feature = "nightly")]
    fn test_instant_on_smp() {
        let zero = Duration::from_millis(0);
        for i in 0..100_000 {
            let now = Instant::now();
            let now_coarse = Instant::now_coarse();
            if i % 100 == 0 {
                thread::yield_now();
            }
            assert!(now.elapsed() >= zero);
            assert!(now_coarse.elapsed() >= zero);
        }
    }

    #[test]
    fn test_buckets_invalidation() {
        let table = vec![
            (vec![], true, DEFAULT_BUCKETS.len()),
            (vec![-2.0, -1.0, -0.5, 0.0, 0.5, 1.0, 2.0], true, 7),
            (vec![-2.0, -1.0, -0.5, 10.0, 0.5, 1.0, 2.0], false, 7),
            (vec![-2.0, -1.0, -0.5, 0.0, 0.5, 1.0, INFINITY], true, 6),
        ];

        for (buckets, is_ok, length) in table {
            let got = check_and_adjust_buckets(buckets);
            assert_eq!(got.is_ok(), is_ok);
            if is_ok {
                assert_eq!(got.unwrap().len(), length);
            }
        }
    }

    #[test]
    fn test_buckets_functions() {
        let linear_table = vec![
            (
                -15.0,
                5.0,
                6,
                true,
                vec![-15.0, -10.0, -5.0, 0.0, 5.0, 10.0],
            ),
            (-15.0, 0.0, 6, false, vec![]),
            (-15.0, 5.0, 0, false, vec![]),
        ];

        for (param1, param2, param3, is_ok, vec) in linear_table {
            let got = linear_buckets(param1, param2, param3);
            assert_eq!(got.is_ok(), is_ok);
            if got.is_ok() {
                assert_eq!(got.unwrap(), vec);
            }
        }

        let exponential_table = vec![
            (100.0, 1.2, 3, true, vec![100.0, 120.0, 144.0]),
            (100.0, 0.5, 3, false, vec![]),
            (100.0, 1.2, 0, false, vec![]),
        ];

        for (param1, param2, param3, is_ok, vec) in exponential_table {
            let got = exponential_buckets(param1, param2, param3);
            assert_eq!(got.is_ok(), is_ok);
            if got.is_ok() {
                assert_eq!(got.unwrap(), vec);
            }
        }
    }

    #[test]
    fn test_duration_to_seconds() {
        let tbls = vec![(1000, 1.0), (1100, 1.1), (100_111, 100.111)];
        for (millis, seconds) in tbls {
            let d = Duration::from_millis(millis);
            let v = duration_to_seconds(d);
            assert!((v - seconds).abs() < EPSILON);
        }
    }

    #[test]
    fn test_histogram_vec_with_label_values() {
        let vec = HistogramVec::new(
            HistogramOpts::new("test_histogram_vec", "test histogram vec help"),
            &["l1", "l2"],
        )
        .unwrap();

        assert!(vec.remove_label_values(&["v1", "v2"]).is_err());
        vec.with_label_values(&["v1", "v2"]).observe(1.0);
        assert!(vec.remove_label_values(&["v1", "v2"]).is_ok());

        assert!(vec.remove_label_values(&["v1"]).is_err());
        assert!(vec.remove_label_values(&["v1", "v3"]).is_err());
    }

    #[test]
    fn test_histogram_vec_with_opts_buckets() {
        let labels = ["l1", "l2"];
        let buckets = vec![1.0, 2.0, 3.0];
        let vec = HistogramVec::new(
            HistogramOpts::new("test_histogram_vec", "test histogram vec help")
                .buckets(buckets.clone()),
            &labels,
        )
        .unwrap();

        let histogram = vec.with_label_values(&["v1", "v2"]);
        histogram.observe(1.0);

        let m = histogram.metric();
        assert_eq!(m.get_label().len(), labels.len());

        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 1);
        assert!((proto_histogram.get_sample_sum() - 1.0) < EPSILON);
        assert_eq!(proto_histogram.get_bucket().len(), buckets.len())
    }

    #[test]
    fn test_histogram_local() {
        let buckets = vec![1.0, 2.0, 3.0];
        let opts = HistogramOpts::new("test_histogram_local", "test histogram local help")
            .buckets(buckets.clone());
        let histogram = Histogram::with_opts(opts).unwrap();
        let local = histogram.local();

        let check = |count, sum| {
            let m = histogram.metric();
            let proto_histogram = m.get_histogram();
            assert_eq!(proto_histogram.get_sample_count(), count);
            assert!((proto_histogram.get_sample_sum() - sum) < EPSILON);
        };

        local.observe(1.0);
        local.observe(4.0);
        check(0, 0.0);

        local.flush();
        check(2, 5.0);

        local.observe(2.0);
        local.clear();
        check(2, 5.0);

        local.observe(2.0);
        drop(local);
        check(3, 7.0);
    }

    #[test]
    fn test_histogram_vec_local() {
        let vec = HistogramVec::new(
            HistogramOpts::new("test_histogram_vec_local", "test histogram vec help"),
            &["l1", "l2"],
        )
        .unwrap();
        let mut local_vec = vec.local();

        vec.remove_label_values(&["v1", "v2"]).unwrap_err();
        local_vec.remove_label_values(&["v1", "v2"]).unwrap_err();

        let check = |count, sum| {
            let ms = vec.collect()[0].take_metric();
            let proto_histogram = ms[0].get_histogram();
            assert_eq!(proto_histogram.get_sample_count(), count);
            assert!((proto_histogram.get_sample_sum() - sum) < EPSILON);
        };

        {
            // Flush LocalHistogram
            let h = local_vec.with_label_values(&["v1", "v2"]);
            h.observe(1.0);
            h.flush();
            check(1, 1.0);
        }

        {
            // Flush LocalHistogramVec
            local_vec.with_label_values(&["v1", "v2"]).observe(4.0);
            local_vec.flush();
            check(2, 5.0);
        }
        {
            // Reset ["v1", "v2"]
            local_vec.remove_label_values(&["v1", "v2"]).unwrap();

            // Flush on drop
            local_vec.with_label_values(&["v1", "v2"]).observe(2.0);
            drop(local_vec);
            check(1, 2.0);
        }
    }

    /// Ensure that when an observe and a collect operation interleave, the
    /// latter does not expose a snapshot of the histogram that does not uphold
    /// all histogram invariants.
    #[test]
    fn atomic_observe_across_collects() {
        let done = Arc::new(std::sync::atomic::AtomicBool::default());
        let histogram =
            Histogram::with_opts(HistogramOpts::new("test_name", "test help").buckets(vec![1.0]))
                .unwrap();

        let done_clone = done.clone();
        let histogram_clone = histogram.clone();
        let observing_thread = std::thread::spawn(move || loop {
            if done_clone.load(std::sync::atomic::Ordering::Relaxed) {
                break;
            }

            for _ in 0..1_000_000 {
                histogram_clone.observe(1.0);
            }
        });

        let mut sample_count = 0;
        let mut cumulative_count = 0;
        let mut sample_sum = 0;
        for _ in 0..1_000_000 {
            let metric = &histogram.collect()[0].take_metric()[0];
            let proto = metric.get_histogram();

            sample_count = proto.get_sample_count();
            sample_sum = proto.get_sample_sum() as u64;
            // There is only one bucket thus the `[0]`.
            cumulative_count = proto.get_bucket()[0].get_cumulative_count();

            if sample_count != cumulative_count {
                break;
            }

            // Observation value is always `1.0` thus count and sum should
            // always equal. The number of `observe` calls is limited to
            // 1_000_000, thus the sum is limited to 1_000_000. A float 64 is
            // able to represent the sum accurately up to 9_007_199_254_740_992.
            if sample_count != sample_sum {
                break;
            }
        }

        done.store(true, std::sync::atomic::Ordering::Relaxed);
        observing_thread.join().unwrap();

        if sample_count != cumulative_count {
            panic!(
                "Histogram invariant violated: For a histogram with a single \
                 bucket observing values below the bucket's upper bound only \
                 the histogram's count should always be equal to the buckets's \
                 cumulative count, got {:?} and {:?} instead.",
                sample_count, cumulative_count,
            );
        }

        if sample_count != sample_sum {
            panic!(
                "Histogram invariant violated: For a histogram which is only \
                 ever observing a value of `1.0` the sample count should equal \
                 the sum, instead got: {:?} and {:?}",
                sample_count, sample_sum,
            )
        }
    }

    #[test]
    fn test_error_on_inconsistent_label_cardinality() {
        let hist = Histogram::with_opts(
            histogram_opts!(
                "example_histogram",
                "Used as an example",
                vec![0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 5.0]
            )
            .variable_label("example_variable"),
        );

        if let Err(Error::InconsistentCardinality { expect, got }) = hist {
            assert_eq!(1, expect);
            assert_eq!(0, got);
        } else {
            panic!("Expected InconsistentCardinality error.")
        }
    }
}