1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use super::Positive;
use crate::error;
pub const CONSTRUCTED: u8 = 1 << 5;
pub const CONTEXT_SPECIFIC: u8 = 2 << 6;
#[derive(Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum Tag {
Boolean = 0x01,
Integer = 0x02,
BitString = 0x03,
OctetString = 0x04,
Null = 0x05,
OID = 0x06,
Sequence = CONSTRUCTED | 0x10,
UTCTime = 0x17,
GeneralizedTime = 0x18,
ContextSpecificConstructed0 = CONTEXT_SPECIFIC | CONSTRUCTED | 0,
ContextSpecificConstructed1 = CONTEXT_SPECIFIC | CONSTRUCTED | 1,
ContextSpecificConstructed3 = CONTEXT_SPECIFIC | CONSTRUCTED | 3,
}
impl From<Tag> for usize {
fn from(tag: Tag) -> Self {
tag as Self
}
}
impl From<Tag> for u8 {
fn from(tag: Tag) -> Self {
tag as Self
}
}
pub fn expect_tag_and_get_value<'a>(
input: &mut untrusted::Reader<'a>,
tag: Tag,
) -> Result<untrusted::Input<'a>, error::Unspecified> {
let (actual_tag, inner) = read_tag_and_get_value(input)?;
if usize::from(tag) != usize::from(actual_tag) {
return Err(error::Unspecified);
}
Ok(inner)
}
pub fn read_tag_and_get_value<'a>(
input: &mut untrusted::Reader<'a>,
) -> Result<(u8, untrusted::Input<'a>), error::Unspecified> {
let tag = input.read_byte()?;
if (tag & 0x1F) == 0x1F {
return Err(error::Unspecified);
}
let length = match input.read_byte()? {
n if (n & 0x80) == 0 => usize::from(n),
0x81 => {
let second_byte = input.read_byte()?;
if second_byte < 128 {
return Err(error::Unspecified);
}
usize::from(second_byte)
}
0x82 => {
let second_byte = usize::from(input.read_byte()?);
let third_byte = usize::from(input.read_byte()?);
let combined = (second_byte << 8) | third_byte;
if combined < 256 {
return Err(error::Unspecified);
}
combined
}
_ => {
return Err(error::Unspecified);
}
};
let inner = input.read_bytes(length)?;
Ok((tag, inner))
}
pub fn bit_string_with_no_unused_bits<'a>(
input: &mut untrusted::Reader<'a>,
) -> Result<untrusted::Input<'a>, error::Unspecified> {
nested(input, Tag::BitString, error::Unspecified, |value| {
let unused_bits_at_end = value.read_byte().map_err(|_| error::Unspecified)?;
if unused_bits_at_end != 0 {
return Err(error::Unspecified);
}
Ok(value.read_bytes_to_end())
})
}
pub fn nested<'a, F, R, E: Copy>(
input: &mut untrusted::Reader<'a>,
tag: Tag,
error: E,
decoder: F,
) -> Result<R, E>
where
F: FnOnce(&mut untrusted::Reader<'a>) -> Result<R, E>,
{
let inner = expect_tag_and_get_value(input, tag).map_err(|_| error)?;
inner.read_all(error, decoder)
}
fn nonnegative_integer<'a>(
input: &mut untrusted::Reader<'a>,
min_value: u8,
) -> Result<untrusted::Input<'a>, error::Unspecified> {
fn check_minimum(input: untrusted::Input, min_value: u8) -> Result<(), error::Unspecified> {
input.read_all(error::Unspecified, |input| {
let first_byte = input.read_byte()?;
if input.at_end() && first_byte < min_value {
return Err(error::Unspecified);
}
let _ = input.read_bytes_to_end();
Ok(())
})
}
let value = expect_tag_and_get_value(input, Tag::Integer)?;
value.read_all(error::Unspecified, |input| {
let first_byte = input.read_byte()?;
if first_byte == 0 {
if input.at_end() {
if min_value > 0 {
return Err(error::Unspecified);
}
return Ok(value);
}
let r = input.read_bytes_to_end();
r.read_all(error::Unspecified, |input| {
let second_byte = input.read_byte()?;
if (second_byte & 0x80) == 0 {
return Err(error::Unspecified);
}
let _ = input.read_bytes_to_end();
Ok(())
})?;
check_minimum(r, min_value)?;
return Ok(r);
}
if (first_byte & 0x80) != 0 {
return Err(error::Unspecified);
}
let _ = input.read_bytes_to_end();
check_minimum(value, min_value)?;
Ok(value)
})
}
#[inline]
pub fn small_nonnegative_integer(input: &mut untrusted::Reader) -> Result<u8, error::Unspecified> {
let value = nonnegative_integer(input, 0)?;
value.read_all(error::Unspecified, |input| {
let r = input.read_byte()?;
Ok(r)
})
}
pub fn positive_integer<'a>(
input: &mut untrusted::Reader<'a>,
) -> Result<Positive<'a>, error::Unspecified> {
Ok(Positive::new_non_empty_without_leading_zeros(
nonnegative_integer(input, 1)?,
))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::error;
fn with_good_i<F, R>(value: &[u8], f: F)
where
F: FnOnce(&mut untrusted::Reader) -> Result<R, error::Unspecified>,
{
let r = untrusted::Input::from(value).read_all(error::Unspecified, f);
assert!(r.is_ok());
}
fn with_bad_i<F, R>(value: &[u8], f: F)
where
F: FnOnce(&mut untrusted::Reader) -> Result<R, error::Unspecified>,
{
let r = untrusted::Input::from(value).read_all(error::Unspecified, f);
assert!(r.is_err());
}
static ZERO_INTEGER: &[u8] = &[0x02, 0x01, 0x00];
static GOOD_POSITIVE_INTEGERS: &[(&[u8], u8)] = &[
(&[0x02, 0x01, 0x01], 0x01),
(&[0x02, 0x01, 0x02], 0x02),
(&[0x02, 0x01, 0x7e], 0x7e),
(&[0x02, 0x01, 0x7f], 0x7f),
(&[0x02, 0x02, 0x00, 0x80], 0x80),
(&[0x02, 0x02, 0x00, 0x81], 0x81),
(&[0x02, 0x02, 0x00, 0xfe], 0xfe),
(&[0x02, 0x02, 0x00, 0xff], 0xff),
];
static BAD_NONNEGATIVE_INTEGERS: &[&[u8]] = &[
&[],
&[0x02],
&[0x02, 0x00],
&[0x02, 0x00, 0x01],
&[0x02, 0x01],
&[0x02, 0x01, 0x00, 0x01],
&[0x02, 0x01, 0x01, 0x00],
&[0x02, 0x02, 0x01],
&[0x02, 0x01, 0x80],
&[0x02, 0x01, 0xfe],
&[0x02, 0x01, 0xff],
&[0x02, 0x02, 0x00, 0x00],
&[0x02, 0x02, 0x00, 0x01],
&[0x02, 0x02, 0x00, 0x02],
&[0x02, 0x02, 0x00, 0x7e],
&[0x02, 0x02, 0x00, 0x7f],
];
#[test]
fn test_small_nonnegative_integer() {
with_good_i(ZERO_INTEGER, |input| {
assert_eq!(small_nonnegative_integer(input)?, 0x00);
Ok(())
});
for &(test_in, test_out) in GOOD_POSITIVE_INTEGERS.iter() {
with_good_i(test_in, |input| {
assert_eq!(small_nonnegative_integer(input)?, test_out);
Ok(())
});
}
for &test_in in BAD_NONNEGATIVE_INTEGERS.iter() {
with_bad_i(test_in, |input| {
let _ = small_nonnegative_integer(input)?;
Ok(())
});
}
}
#[test]
fn test_positive_integer() {
with_bad_i(ZERO_INTEGER, |input| {
let _ = positive_integer(input)?;
Ok(())
});
for &(test_in, test_out) in GOOD_POSITIVE_INTEGERS.iter() {
with_good_i(test_in, |input| {
let test_out = [test_out];
assert_eq!(
positive_integer(input)?.big_endian_without_leading_zero_as_input(),
untrusted::Input::from(&test_out[..])
);
Ok(())
});
}
for &test_in in BAD_NONNEGATIVE_INTEGERS.iter() {
with_bad_i(test_in, |input| {
let _ = positive_integer(input)?;
Ok(())
});
}
}
}