1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#[cfg(feature = "risky-raw-split")]
use crate::constants::{CIPHERKEYLEN, MAXHASHLEN};
#[cfg(feature = "hfs")]
use crate::constants::{MAXKEMCTLEN, MAXKEMPUBLEN, MAXKEMSSLEN};
#[cfg(feature = "hfs")]
use crate::types::Kem;
use crate::{
    cipherstate::{CipherState, CipherStates},
    constants::{MAXDHLEN, MAXMSGLEN, PSKLEN, TAGLEN},
    error::{Error, InitStage, StateProblem},
    params::{DhToken, HandshakeTokens, MessagePatterns, NoiseParams, Token},
    stateless_transportstate::StatelessTransportState,
    symmetricstate::SymmetricState,
    transportstate::TransportState,
    types::{Dh, Hash, Random},
    utils::Toggle,
};
use std::{
    convert::{TryFrom, TryInto},
    fmt,
};

/// A state machine encompassing the handshake phase of a Noise session.
///
/// **Note:** you are probably looking for [`Builder`](struct.Builder.html) to
/// get started.
///
/// See: [http://noiseprotocol.org/noise.html#the-handshakestate-object](http://noiseprotocol.org/noise.html#the-handshakestate-object)
pub struct HandshakeState {
    pub(crate) rng:              Box<dyn Random>,
    pub(crate) symmetricstate:   SymmetricState,
    pub(crate) cipherstates:     CipherStates,
    pub(crate) s:                Toggle<Box<dyn Dh>>,
    pub(crate) e:                Toggle<Box<dyn Dh>>,
    pub(crate) fixed_ephemeral:  bool,
    pub(crate) rs:               Toggle<[u8; MAXDHLEN]>,
    pub(crate) re:               Toggle<[u8; MAXDHLEN]>,
    pub(crate) initiator:        bool,
    pub(crate) params:           NoiseParams,
    pub(crate) psks:             [Option<[u8; PSKLEN]>; 10],
    #[cfg(feature = "hfs")]
    pub(crate) kem:              Option<Box<dyn Kem>>,
    #[cfg(feature = "hfs")]
    pub(crate) kem_re:           Option<[u8; MAXKEMPUBLEN]>,
    pub(crate) my_turn:          bool,
    pub(crate) message_patterns: MessagePatterns,
    pub(crate) pattern_position: usize,
}

impl HandshakeState {
    #[allow(clippy::too_many_arguments)]
    pub(crate) fn new(
        rng: Box<dyn Random>,
        cipherstate: CipherState,
        hasher: Box<dyn Hash>,
        s: Toggle<Box<dyn Dh>>,
        e: Toggle<Box<dyn Dh>>,
        fixed_ephemeral: bool,
        rs: Toggle<[u8; MAXDHLEN]>,
        re: Toggle<[u8; MAXDHLEN]>,
        initiator: bool,
        params: NoiseParams,
        psks: [Option<[u8; PSKLEN]>; 10],
        prologue: &[u8],
        cipherstates: CipherStates,
    ) -> Result<HandshakeState, Error> {
        if (s.is_on() && e.is_on() && s.pub_len() != e.pub_len())
            || (s.is_on() && rs.is_on() && s.pub_len() > rs.len())
            || (s.is_on() && re.is_on() && s.pub_len() > re.len())
        {
            bail!(InitStage::ValidateKeyLengths);
        }

        let tokens = HandshakeTokens::try_from(&params.handshake)?;

        let mut symmetricstate = SymmetricState::new(cipherstate, hasher);

        symmetricstate.initialize(&params.name);
        symmetricstate.mix_hash(prologue);

        let dh_len = s.pub_len();
        if initiator {
            for token in tokens.premsg_pattern_i {
                symmetricstate.mix_hash(
                    match *token {
                        Token::S => &s,
                        Token::E => &e,
                        _ => unreachable!(),
                    }
                    .get()
                    .ok_or(StateProblem::MissingKeyMaterial)?
                    .pubkey(),
                );
            }
            for token in tokens.premsg_pattern_r {
                symmetricstate.mix_hash(
                    &match *token {
                        Token::S => &rs,
                        Token::E => &re,
                        _ => unreachable!(),
                    }
                    .get()
                    .ok_or(StateProblem::MissingKeyMaterial)?[..dh_len],
                );
            }
        } else {
            for token in tokens.premsg_pattern_i {
                symmetricstate.mix_hash(
                    &match *token {
                        Token::S => &rs,
                        Token::E => &re,
                        _ => unreachable!(),
                    }
                    .get()
                    .ok_or(StateProblem::MissingKeyMaterial)?[..dh_len],
                );
            }
            for token in tokens.premsg_pattern_r {
                symmetricstate.mix_hash(
                    match *token {
                        Token::S => &s,
                        Token::E => &e,
                        _ => unreachable!(),
                    }
                    .get()
                    .ok_or(StateProblem::MissingKeyMaterial)?
                    .pubkey(),
                );
            }
        }

        Ok(HandshakeState {
            rng,
            symmetricstate,
            cipherstates,
            s,
            e,
            fixed_ephemeral,
            rs,
            re,
            initiator,
            params,
            psks,
            #[cfg(feature = "hfs")]
            kem: None,
            #[cfg(feature = "hfs")]
            kem_re: None,
            my_turn: initiator,
            message_patterns: tokens.msg_patterns,
            pattern_position: 0,
        })
    }

    pub(crate) fn dh_len(&self) -> usize {
        self.s.pub_len()
    }

    #[cfg(feature = "hfs")]
    pub(crate) fn set_kem(&mut self, kem: Box<dyn Kem>) {
        self.kem = Some(kem);
    }

    fn dh(&self, token: &DhToken) -> Result<[u8; MAXDHLEN], Error> {
        let mut dh_out = [0u8; MAXDHLEN];
        let (dh, key) = match (token, self.is_initiator()) {
            (DhToken::Ee, _) => (&self.e, &self.re),
            (DhToken::Ss, _) => (&self.s, &self.rs),
            (DhToken::Se, true) | (DhToken::Es, false) => (&self.s, &self.re),
            (DhToken::Es, true) | (DhToken::Se, false) => (&self.e, &self.rs),
        };
        if !(dh.is_on() && key.is_on()) {
            bail!(StateProblem::MissingKeyMaterial);
        }
        dh.dh(&**key, &mut dh_out).map_err(|_| Error::Dh)?;
        Ok(dh_out)
    }

    /// This method will return `true` if the *previous* write payload was encrypted.
    ///
    /// See [Payload Security Properties](http://noiseprotocol.org/noise.html#payload-security-properties)
    /// for more information on the specific properties of your chosen handshake pattern.
    ///
    /// # Examples
    ///
    /// ```rust,ignore
    /// let mut session = Builder::new("Noise_NN_25519_AESGCM_SHA256".parse()?)
    ///     .build_initiator()?;
    ///
    /// // write message...
    ///
    /// assert!(session.was_write_payload_encrypted());
    /// ```
    pub fn was_write_payload_encrypted(&self) -> bool {
        self.symmetricstate.has_key()
    }

    /// Construct a message from `payload` (and pending handshake tokens if in handshake state),
    /// and writes it to the `message` buffer.
    ///
    /// Returns the size of the written payload.
    ///
    /// # Errors
    ///
    /// Will result in `Error::Input` if the size of the output exceeds the max message
    /// length in the Noise Protocol (65535 bytes).
    pub fn write_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, Error> {
        let checkpoint = self.symmetricstate.checkpoint();
        match self._write_message(payload, message) {
            Ok(res) => {
                self.pattern_position += 1;
                self.my_turn = false;
                Ok(res)
            },
            Err(err) => {
                self.symmetricstate.restore(checkpoint);
                Err(err)
            },
        }
    }

    fn _write_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, Error> {
        if !self.my_turn {
            bail!(StateProblem::NotTurnToWrite);
        } else if self.pattern_position >= self.message_patterns.len() {
            bail!(StateProblem::HandshakeAlreadyFinished);
        }

        let mut byte_index = 0;
        for token in self.message_patterns[self.pattern_position].iter() {
            match token {
                Token::E => {
                    if byte_index + self.e.pub_len() > message.len() {
                        bail!(Error::Input)
                    }

                    if !self.fixed_ephemeral {
                        self.e.generate(&mut *self.rng);
                    }
                    let pubkey = self.e.pubkey();
                    message[byte_index..byte_index + pubkey.len()].copy_from_slice(pubkey);
                    byte_index += pubkey.len();
                    self.symmetricstate.mix_hash(pubkey);
                    if self.params.handshake.is_psk() {
                        self.symmetricstate.mix_key(pubkey);
                    }
                    self.e.enable();
                },
                Token::S => {
                    if !self.s.is_on() {
                        bail!(StateProblem::MissingKeyMaterial);
                    } else if byte_index + self.s.pub_len() > message.len() {
                        bail!(Error::Input)
                    }

                    byte_index += self
                        .symmetricstate
                        .encrypt_and_mix_hash(self.s.pubkey(), &mut message[byte_index..])?;
                },
                Token::Psk(n) => match self.psks[*n as usize] {
                    Some(psk) => {
                        self.symmetricstate.mix_key_and_hash(&psk);
                    },
                    None => {
                        bail!(StateProblem::MissingPsk);
                    },
                },
                Token::Dh(t) => {
                    let dh_out = self.dh(t)?;
                    self.symmetricstate.mix_key(&dh_out[..self.dh_len()]);
                },
                #[cfg(feature = "hfs")]
                Token::E1 => {
                    let kem = self.kem.as_mut().ok_or(Error::Input)?;
                    if kem.pub_len() > message.len() {
                        bail!(Error::Input);
                    }

                    kem.generate(&mut *self.rng);
                    byte_index += self
                        .symmetricstate
                        .encrypt_and_mix_hash(kem.pubkey(), &mut message[byte_index..])?;
                },
                #[cfg(feature = "hfs")]
                Token::Ekem1 => {
                    let kem = self.kem.as_mut().unwrap();
                    let mut kem_output_buf = [0; MAXKEMSSLEN];
                    let mut ciphertext_buf = [0; MAXKEMCTLEN];

                    if kem.ciphertext_len() > message.len() {
                        bail!(Error::Input);
                    }

                    let kem_output = &mut kem_output_buf[..kem.shared_secret_len()];
                    let ciphertext = &mut ciphertext_buf[..kem.ciphertext_len()];
                    let pubkey = &self.kem_re.as_ref().unwrap()[..kem.pub_len()];
                    if kem.encapsulate(pubkey, kem_output, ciphertext).is_err() {
                        bail!(Error::Kem);
                    }

                    byte_index += self.symmetricstate.encrypt_and_mix_hash(
                        &ciphertext[..kem.ciphertext_len()],
                        &mut message[byte_index..],
                    )?;
                    self.symmetricstate.mix_key(&kem_output[..kem.shared_secret_len()]);
                },
            }
        }

        if byte_index + payload.len() + TAGLEN > message.len() {
            bail!(Error::Input);
        }
        byte_index +=
            self.symmetricstate.encrypt_and_mix_hash(payload, &mut message[byte_index..])?;
        if byte_index > MAXMSGLEN {
            bail!(Error::Input);
        }
        if self.pattern_position == (self.message_patterns.len() - 1) {
            self.symmetricstate.split(&mut self.cipherstates.0, &mut self.cipherstates.1);
        }
        Ok(byte_index)
    }

    /// Reads a noise message from `input`
    ///
    /// Returns the size of the payload written to `payload`.
    ///
    /// # Errors
    ///
    /// Will result in `Error::Decrypt` if the contents couldn't be decrypted and/or the
    /// authentication tag didn't verify.
    ///
    /// # Panics
    ///
    /// This function will panic if there is no key, or if there is a nonce overflow.
    pub fn read_message(&mut self, message: &[u8], payload: &mut [u8]) -> Result<usize, Error> {
        let checkpoint = self.symmetricstate.checkpoint();
        match self._read_message(message, payload) {
            Ok(res) => {
                self.pattern_position += 1;
                self.my_turn = true;
                Ok(res)
            },
            Err(err) => {
                self.symmetricstate.restore(checkpoint);
                Err(err)
            },
        }
    }

    fn _read_message(&mut self, message: &[u8], payload: &mut [u8]) -> Result<usize, Error> {
        if message.len() > MAXMSGLEN {
            bail!(Error::Input);
        } else if self.my_turn {
            bail!(StateProblem::NotTurnToRead);
        } else if self.pattern_position >= self.message_patterns.len() {
            bail!(StateProblem::HandshakeAlreadyFinished);
        }
        let last = self.pattern_position == (self.message_patterns.len() - 1);

        let dh_len = self.dh_len();
        let mut ptr = message;
        for token in self.message_patterns[self.pattern_position].iter() {
            match token {
                Token::E => {
                    if ptr.len() < dh_len {
                        bail!(Error::Input);
                    }
                    self.re[..dh_len].copy_from_slice(&ptr[..dh_len]);
                    ptr = &ptr[dh_len..];
                    self.symmetricstate.mix_hash(&self.re[..dh_len]);
                    if self.params.handshake.is_psk() {
                        self.symmetricstate.mix_key(&self.re[..dh_len]);
                    }
                    self.re.enable();
                },
                Token::S => {
                    let data = if self.symmetricstate.has_key() {
                        if ptr.len() < dh_len + TAGLEN {
                            bail!(Error::Input);
                        }
                        let temp = &ptr[..dh_len + TAGLEN];
                        ptr = &ptr[dh_len + TAGLEN..];
                        temp
                    } else {
                        if ptr.len() < dh_len {
                            bail!(Error::Input);
                        }
                        let temp = &ptr[..dh_len];
                        ptr = &ptr[dh_len..];
                        temp
                    };
                    self.symmetricstate
                        .decrypt_and_mix_hash(data, &mut self.rs[..dh_len])
                        .map_err(|_| Error::Decrypt)?;
                    self.rs.enable();
                },
                Token::Psk(n) => match self.psks[*n as usize] {
                    Some(psk) => {
                        self.symmetricstate.mix_key_and_hash(&psk);
                    },
                    None => {
                        bail!(StateProblem::MissingPsk);
                    },
                },
                Token::Dh(t) => {
                    let dh_out = self.dh(t)?;
                    self.symmetricstate.mix_key(&dh_out[..self.dh_len()]);
                },
                #[cfg(feature = "hfs")]
                Token::E1 => {
                    let kem = self.kem.as_ref().ok_or(Error::Kem)?;
                    let read_len = if self.symmetricstate.has_key() {
                        kem.pub_len() + TAGLEN
                    } else {
                        kem.pub_len()
                    };
                    if ptr.len() < read_len {
                        bail!(Error::Input);
                    }
                    let mut kem_re = [0; MAXKEMPUBLEN];
                    self.symmetricstate
                        .decrypt_and_mix_hash(&ptr[..read_len], &mut kem_re[..kem.pub_len()])
                        .map_err(|_| Error::Decrypt)?;
                    self.kem_re = Some(kem_re);
                    ptr = &ptr[read_len..];
                },
                #[cfg(feature = "hfs")]
                Token::Ekem1 => {
                    let kem = self.kem.as_ref().unwrap();
                    let read_len = if self.symmetricstate.has_key() {
                        kem.ciphertext_len() + TAGLEN
                    } else {
                        kem.ciphertext_len()
                    };
                    if ptr.len() < read_len {
                        bail!(Error::Input);
                    }
                    let mut ciphertext_buf = [0; MAXKEMCTLEN];
                    let ciphertext = &mut ciphertext_buf[..kem.ciphertext_len()];
                    self.symmetricstate
                        .decrypt_and_mix_hash(&ptr[..read_len], ciphertext)
                        .map_err(|_| Error::Decrypt)?;
                    let mut kem_output_buf = [0; MAXKEMSSLEN];
                    let kem_output = &mut kem_output_buf[..kem.shared_secret_len()];
                    kem.decapsulate(ciphertext, kem_output).map_err(|_| Error::Kem)?;
                    self.symmetricstate.mix_key(&kem_output[..kem.shared_secret_len()]);
                    ptr = &ptr[read_len..];
                },
            }
        }

        self.symmetricstate.decrypt_and_mix_hash(ptr, payload).map_err(|_| Error::Decrypt)?;
        if last {
            self.symmetricstate.split(&mut self.cipherstates.0, &mut self.cipherstates.1);
        }
        let payload_len =
            if self.symmetricstate.has_key() { ptr.len() - TAGLEN } else { ptr.len() };
        Ok(payload_len)
    }

    /// Set the preshared key at the specified location. It is up to the caller
    /// to correctly set the location based on the specified handshake - Snow
    /// won't stop you from placing a PSK in an unused slot.
    ///
    /// # Errors
    ///
    /// Will result in `Error::Input` if the PSK is not the right length or the location is out of bounds.
    pub fn set_psk(&mut self, location: usize, key: &[u8]) -> Result<(), Error> {
        if key.len() != PSKLEN || self.psks.len() <= location {
            bail!(Error::Input);
        }

        let mut new_psk = [0u8; PSKLEN];
        new_psk.copy_from_slice(&key[..]);
        self.psks[location as usize] = Some(new_psk);

        Ok(())
    }

    /// Get the remote party's static public key, if available.
    ///
    /// Note: will return `None` if either the chosen Noise pattern
    /// doesn't necessitate a remote static key, *or* if the remote
    /// static key is not yet known (as can be the case in the `XX`
    /// pattern, for example).
    pub fn get_remote_static(&self) -> Option<&[u8]> {
        self.rs.get().map(|rs| &rs[..self.dh_len()])
    }

    /// Get the handshake hash.
    ///
    /// Returns a slice of length `Hasher.hash_len()` (i.e. HASHLEN for the chosen Hash function).
    pub fn get_handshake_hash(&self) -> &[u8] {
        self.symmetricstate.handshake_hash()
    }

    /// Check if this session was started with the "initiator" role.
    pub fn is_initiator(&self) -> bool {
        self.initiator
    }

    /// Check if the handshake is finished and `into_transport_mode()` can now be called.
    pub fn is_handshake_finished(&self) -> bool {
        self.pattern_position == self.message_patterns.len()
    }

    /// Check whether it is our turn to send in the handshake state machine
    pub fn is_my_turn(&self) -> bool {
        self.my_turn
    }

    /// Perform the split calculation and return the resulting keys.
    ///
    /// This returns raw key material so it should be used with care. The "risky-raw-split"
    /// feature has to be enabled to use this function.
    #[cfg(feature = "risky-raw-split")]
    pub fn dangerously_get_raw_split(&mut self) -> ([u8; CIPHERKEYLEN], [u8; CIPHERKEYLEN]) {
        let mut output = ([0u8; MAXHASHLEN], [0u8; MAXHASHLEN]);
        self.symmetricstate.split_raw(&mut output.0, &mut output.1);
        (output.0[..CIPHERKEYLEN].try_into().unwrap(), output.1[..CIPHERKEYLEN].try_into().unwrap())
    }

    /// Convert this `HandshakeState` into a `TransportState` with an internally stored nonce.
    pub fn into_transport_mode(self) -> Result<TransportState, Error> {
        Ok(self.try_into()?)
    }

    /// Convert this `HandshakeState` into a `StatelessTransportState` without an internally stored nonce.
    pub fn into_stateless_transport_mode(self) -> Result<StatelessTransportState, Error> {
        Ok(self.try_into()?)
    }
}

impl fmt::Debug for HandshakeState {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("HandshakeState").finish()
    }
}