1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
/*!

**A fast bump allocation arena for Rust.**

[![](https://docs.rs/bumpalo/badge.svg)](https://docs.rs/bumpalo/)
[![](https://img.shields.io/crates/v/bumpalo.svg)](https://crates.io/crates/bumpalo)
[![](https://img.shields.io/crates/d/bumpalo.svg)](https://crates.io/crates/bumpalo)
[![Build Status](https://github.com/fitzgen/bumpalo/workflows/Rust/badge.svg)](https://github.com/fitzgen/bumpalo/actions?query=workflow%3ARust)

![](https://github.com/fitzgen/bumpalo/raw/master/bumpalo.png)

## Bump Allocation

Bump allocation is a fast, but limited approach to allocation. We have a chunk
of memory, and we maintain a pointer within that memory. Whenever we allocate an
object, we do a quick test that we have enough capacity left in our chunk to
allocate the object and then update the pointer by the object's size. *That's
it!*

The disadvantage of bump allocation is that there is no general way to
deallocate individual objects or reclaim the memory region for a
no-longer-in-use object.

These trade offs make bump allocation well-suited for *phase-oriented*
allocations. That is, a group of objects that will all be allocated during the
same program phase, used, and then can all be deallocated together as a group.

## Deallocation en Masse, but No `Drop`

To deallocate all the objects in the arena at once, we can simply reset the bump
pointer back to the start of the arena's memory chunk. This makes mass
deallocation *extremely* fast, but allocated objects' `Drop` implementations are
not invoked.

> **However:** [`bumpalo::boxed::Box<T>`][crate::boxed::Box] can be used to wrap
> `T` values allocated in the `Bump` arena, and calls `T`'s `Drop`
> implementation when the `Box<T>` wrapper goes out of scope. This is similar to
> how [`std::boxed::Box`] works, except without deallocating its backing memory.

[`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html

## What happens when the memory chunk is full?

This implementation will allocate a new memory chunk from the global allocator
and then start bump allocating into this new memory chunk.

## Example

```
use bumpalo::Bump;
use std::u64;

struct Doggo {
    cuteness: u64,
    age: u8,
    scritches_required: bool,
}

// Create a new arena to bump allocate into.
let bump = Bump::new();

// Allocate values into the arena.
let scooter = bump.alloc(Doggo {
    cuteness: u64::max_value(),
    age: 8,
    scritches_required: true,
});

// Exclusive, mutable references to the just-allocated value are returned.
assert!(scooter.scritches_required);
scooter.age += 1;
```

## Collections

When the `"collections"` cargo feature is enabled, a fork of some of the `std`
library's collections are available in the `collections` module. These
collection types are modified to allocate their space inside `bumpalo::Bump`
arenas.

```rust
# #[cfg(feature = "collections")]
# {
use bumpalo::{Bump, collections::Vec};

// Create a new bump arena.
let bump = Bump::new();

// Create a vector of integers whose storage is backed by the bump arena. The
// vector cannot outlive its backing arena, and this property is enforced with
// Rust's lifetime rules.
let mut v = Vec::new_in(&bump);

// Push a bunch of integers onto `v`!
for i in 0..100 {
    v.push(i);
}
# }
```

Eventually [all `std` collection types will be parameterized by an
allocator](https://github.com/rust-lang/rust/issues/42774) and we can remove
this `collections` module and use the `std` versions.

For unstable, nightly-only support for custom allocators in `std`, see the
`allocator_api` section below.

## `bumpalo::boxed::Box`

When the `"boxed"` cargo feature is enabled, a fork of `std::boxed::Box` library
is available in the `boxed` module. This `Box` type is modified to allocate its
space inside `bumpalo::Bump` arenas.

**A `Box<T>` runs `T`'s drop implementation when the `Box<T>` is dropped.** You
can use this to work around the fact that `Bump` does not drop values allocated
in its space itself.

```rust
# #[cfg(feature = "boxed")]
# {
use bumpalo::{Bump, boxed::Box};
use std::sync::atomic::{AtomicUsize, Ordering};

static NUM_DROPPED: AtomicUsize = AtomicUsize::new(0);

struct CountDrops;

impl Drop for CountDrops {
    fn drop(&mut self) {
        NUM_DROPPED.fetch_add(1, Ordering::SeqCst);
    }
}

// Create a new bump arena.
let bump = Bump::new();

// Create a `CountDrops` inside the bump arena.
let mut c = Box::new_in(CountDrops, &bump);

// No `CountDrops` have been dropped yet.
assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 0);

// Drop our `Box<CountDrops>`.
drop(c);

// Its `Drop` implementation was run, and so `NUM_DROPS` has been incremented.
assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 1);
# }
```

## `#![no_std]` Support

Bumpalo is a `no_std` crate. It depends only on the `alloc` and `core` crates.

## Thread support

The `Bump` is `!Send`, which makes it hard to use in certain situations around threads ‒ for
example in `rayon`.

The [`bumpalo-herd`](https://crates.io/crates/bumpalo-herd) crate provides a pool of `Bump`
allocators for use in such situations.

## Nightly Rust `feature(allocator_api)` Support

The unstable, nightly-only Rust `allocator_api` feature defines an `Allocator`
trait and exposes custom allocators for `std` types. Bumpalo has a matching
`allocator_api` cargo feature to enable implementing `Allocator` and using
`Bump` with `std` collections. Note that, as `feature(allocator_api)` is
unstable and only in nightly Rust, Bumpalo's matching `allocator_api` cargo
feature should be considered unstable, and will not follow the semver
conventions that the rest of the crate does.

First, enable the `allocator_api` feature in your `Cargo.toml`:

```toml
[dependencies]
bumpalo = { version = "3.4.0", features = ["allocator_api"] }
```

Next, enable the `allocator_api` nightly Rust feature in your `src/lib.rs` or `src/main.rs`:

```rust
# #[cfg(feature = "allocator_api")]
# {
#![feature(allocator_api)]
# }
```

Finally, use `std` collections with `Bump`, so that their internal heap
allocations are made within the given bump arena:

```
# #![cfg_attr(feature = "allocator_api", feature(allocator_api))]
# #[cfg(feature = "allocator_api")]
# {
#![feature(allocator_api)]
use bumpalo::Bump;

// Create a new bump arena.
let bump = Bump::new();

// Create a `Vec` whose elements are allocated within the bump arena.
let mut v = Vec::new_in(&bump);
v.push(0);
v.push(1);
v.push(2);
# }
```

### Minimum Supported Rust Version (MSRV)

This crate is guaranteed to compile on stable Rust 1.44 and up. It might compile
with older versions but that may change in any new patch release.

We reserve the right to increment the MSRV on minor releases, however we will strive
to only do it deliberately and for good reasons.

 */

#![deny(missing_debug_implementations)]
#![deny(missing_docs)]
#![no_std]
#![cfg_attr(
    feature = "allocator_api",
    feature(allocator_api, nonnull_slice_from_raw_parts)
)]

#[doc(hidden)]
pub extern crate alloc as core_alloc;

#[cfg(feature = "boxed")]
pub mod boxed;
#[cfg(feature = "collections")]
pub mod collections;

mod alloc;

use core::cell::Cell;
use core::fmt::Display;
use core::iter;
use core::marker::PhantomData;
use core::mem;
use core::ptr::{self, NonNull};
use core::slice;
use core::str;
use core_alloc::alloc::{alloc, dealloc, Layout};
#[cfg(feature = "allocator_api")]
use core_alloc::alloc::{AllocError, Allocator};

/// An error returned from [`Bump::try_alloc_try_with`].
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum AllocOrInitError<E> {
    /// Indicates that the initial allocation failed.
    Alloc(alloc::AllocErr),
    /// Indicates that the initializer failed with the contained error after
    /// allocation.
    ///
    /// It is possible but not guaranteed that the allocated memory has been
    /// released back to the allocator at this point.
    Init(E),
}
impl<E> From<alloc::AllocErr> for AllocOrInitError<E> {
    fn from(e: alloc::AllocErr) -> Self {
        Self::Alloc(e)
    }
}
impl<E: Display> Display for AllocOrInitError<E> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            AllocOrInitError::Alloc(err) => err.fmt(f),
            AllocOrInitError::Init(err) => write!(f, "initialization failed: {}", err),
        }
    }
}

/// An arena to bump allocate into.
///
/// ## No `Drop`s
///
/// Objects that are bump-allocated will never have their `Drop` implementation
/// called &mdash; unless you do it manually yourself. This makes it relatively
/// easy to leak memory or other resources.
///
/// If you have a type which internally manages
///
/// * an allocation from the global heap (e.g. `Vec<T>`),
/// * open file descriptors (e.g. `std::fs::File`), or
/// * any other resource that must be cleaned up (e.g. an `mmap`)
///
/// and relies on its `Drop` implementation to clean up the internal resource,
/// then if you allocate that type with a `Bump`, you need to find a new way to
/// clean up after it yourself.
///
/// Potential solutions are:
///
/// * Using [`bumpalo::boxed::Box::new_in`] instead of [`Bump::alloc`], that
///   will drop wrapped values similarly to [`std::boxed::Box`]. Note that this
///   requires enabling the `"boxed"` Cargo feature for this crate. **This is
///   often the easiest solution.**
///
/// * Calling [`drop_in_place`][drop_in_place] or using
///   [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types.
///
/// * Using [`bumpalo::collections::Vec`] instead of [`std::vec::Vec`].
///
/// * Avoiding allocating these problematic types within a `Bump`.
///
/// Note that not calling `Drop` is memory safe! Destructors are never
/// guaranteed to run in Rust, you can't rely on them for enforcing memory
/// safety.
///
/// [drop_in_place]: https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html
/// [manuallydrop]: https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
/// [`bumpalo::collections::Vec`]: ./collections/struct.Vec.html
/// [`std::vec::Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
/// [`bumpalo::boxed::Box::new_in`]: ./boxed/struct.Box.html#method.new_in
/// [`Bump::alloc`]: ./struct.Bump.html#method.alloc
/// [`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html
///
/// ## Example
///
/// ```
/// use bumpalo::Bump;
///
/// // Create a new bump arena.
/// let bump = Bump::new();
///
/// // Allocate values into the arena.
/// let forty_two = bump.alloc(42);
/// assert_eq!(*forty_two, 42);
///
/// // Mutable references are returned from allocation.
/// let mut s = bump.alloc("bumpalo");
/// *s = "the bump allocator; and also is a buffalo";
/// ```
///
/// ## Allocation Methods Come in Many Flavors
///
/// There are various allocation methods on `Bump`, the simplest being
/// [`alloc`][Bump::alloc]. The others exist to satisfy some combination of
/// fallible allocation and initialization. The allocation methods are
/// summarized in the following table:
///
/// <table>
///   <thead>
///     <tr>
///       <th></th>
///       <th>Infallible Allocation</th>
///       <th>Fallible Allocation</th>
///     </tr>
///   </thead>
///     <tr>
///       <th>By Value</th>
///       <td><a href="#method.alloc"><code>alloc</code></a></td>
///       <td><a href="#method.try_alloc"><code>try_alloc</code></a></td>
///     </tr>
///     <tr>
///       <th>Infallible Initializer Function</th>
///       <td><a href="#method.alloc_with"><code>alloc_with</code></a></td>
///       <td><a href="#method.try_alloc_with"><code>try_alloc_with</code></a></td>
///     </tr>
///     <tr>
///       <th>Fallible Initializer Function</th>
///       <td><a href="#method.alloc_try_with"><code>alloc_try_with</code></a></td>
///       <td><a href="#method.try_alloc_try_with"><code>try_alloc_try_with</code></a></td>
///     </tr>
///   <tbody>
///   </tbody>
/// </table>
///
/// ### Fallible Allocation: The `try_alloc_` Method Prefix
///
/// These allocation methods let you recover from out-of-memory (OOM)
/// scenarioes, rather than raising a panic on OOM.
///
/// ```
/// use bumpalo::Bump;
///
/// let bump = Bump::new();
///
/// match bump.try_alloc(MyStruct {
///     // ...
/// }) {
///     Ok(my_struct) => {
///         // Allocation succeeded.
///     }
///     Err(e) => {
///         // Out of memory.
///     }
/// }
///
/// struct MyStruct {
///     // ...
/// }
/// ```
///
/// ### Initializer Functions: The `_with` Method Suffix
///
/// Calling one of the generic `…alloc(x)` methods is essentially equivalent to
/// the matching [`…alloc_with(|| x)`](?search=alloc_with). However if you use
/// `…alloc_with`, then the closure will not be invoked until after allocating
/// space for storing `x` on the heap.
///
/// This can be useful in certain edge-cases related to compiler optimizations.
/// When evaluating for example `bump.alloc(x)`, semantically `x` is first put
/// on the stack and then moved onto the heap. In some cases, the compiler is
/// able to optimize this into constructing `x` directly on the heap, however
/// in many cases it does not.
///
/// The `*alloc_with` functions try to help the compiler be smarter. In most
/// cases doing for example `bump.try_alloc_with(|| x)` on release mode will be
/// enough to help the compiler realize that this optimization is valid and
/// to construct `x` directly onto the heap.
///
/// #### Warning
///
/// These functions critically depend on compiler optimizations to achieve their
/// desired effect. This means that it is not an effective tool when compiling
/// without optimizations on.
///
/// Even when optimizations are on, these functions do not **guarantee** that
/// the value is constructed on the heap. To the best of our knowledge no such
/// guarantee can be made in stable Rust as of 1.44.
///
/// ### Fallible Initialization: The `_try_with` Method Suffix
///
/// The generic [`…alloc_try_with(|| x)`](?search=_try_with) methods behave
/// like the purely `_with` suffixed methods explained above. However, they
/// allow for fallible initialization by accepting a closure that returns a
/// [`Result`] and will attempt to undo the initial allocation if this closure
/// returns [`Err`].
///
/// #### Warning
///
/// If the inner closure returns [`Ok`], space for the entire [`Result`] remains
/// allocated inside `self`. This can be a problem especially if the [`Err`]
/// variant is larger, but even otherwise there may be overhead for the
/// [`Result`]'s discriminant.
///
/// <p><details><summary>Undoing the allocation in the <code>Err</code> case
/// always fails if <code>f</code> successfully made any additional allocations
/// in <code>self</code>.</summary>
///
/// For example, the following will always leak also space for the [`Result`]
/// into this `Bump`, even though the inner reference isn't kept and the [`Err`]
/// payload is returned semantically by value:
///
/// ```rust
/// let bump = bumpalo::Bump::new();
///
/// let r: Result<&mut [u8; 1000], ()> = bump.alloc_try_with(|| {
///     let _ = bump.alloc(0_u8);
///     Err(())
/// });
///
/// assert!(r.is_err());
/// ```
///
///</details></p>
///
/// Since [`Err`] payloads are first placed on the heap and then moved to the
/// stack, `bump.…alloc_try_with(|| x)?` is likely to execute more slowly than
/// the matching `bump.…alloc(x?)` in case of initialization failure. If this
/// happens frequently, using the plain un-suffixed method may perform better.
#[derive(Debug)]
pub struct Bump {
    // The current chunk we are bump allocating within.
    current_chunk_footer: Cell<NonNull<ChunkFooter>>,
}

#[repr(C)]
#[derive(Debug)]
struct ChunkFooter {
    // Pointer to the start of this chunk allocation. This footer is always at
    // the end of the chunk.
    data: NonNull<u8>,

    // The layout of this chunk's allocation.
    layout: Layout,

    // Link to the previous chunk, if any.
    prev: Cell<Option<NonNull<ChunkFooter>>>,

    // Bump allocation finger that is always in the range `self.data..=self`.
    ptr: Cell<NonNull<u8>>,
}

impl Default for Bump {
    fn default() -> Bump {
        Bump::new()
    }
}

impl Drop for Bump {
    fn drop(&mut self) {
        unsafe {
            dealloc_chunk_list(Some(self.current_chunk_footer.get()));
        }
    }
}

#[inline]
unsafe fn dealloc_chunk_list(mut footer: Option<NonNull<ChunkFooter>>) {
    while let Some(f) = footer {
        footer = f.as_ref().prev.get();
        dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
    }
}

// `Bump`s are safe to send between threads because nothing aliases its owned
// chunks until you start allocating from it. But by the time you allocate from
// it, the returned references to allocations borrow the `Bump` and therefore
// prevent sending the `Bump` across threads until the borrows end.
unsafe impl Send for Bump {}

#[inline]
pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
    debug_assert!(divisor > 0);
    debug_assert!(divisor.is_power_of_two());
    Some(n.checked_add(divisor - 1)? & !(divisor - 1))
}

// After this point, we try to hit page boundaries instead of powers of 2
const PAGE_STRATEGY_CUTOFF: usize = 0x1000;

// We only support alignments of up to 16 bytes for iter_allocated_chunks.
const SUPPORTED_ITER_ALIGNMENT: usize = 16;
const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();

// Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case
const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN;
const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()];

// Maximum typical overhead per allocation imposed by allocators.
const MALLOC_OVERHEAD: usize = 16;

// This is the overhead from malloc, footer and alignment. For instance, if
// we want to request a chunk of memory that has at least X bytes usable for
// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
// after adding a footer, malloc overhead and alignment, the chunk of memory
// the allocator actually sets asside for us is X+OVERHEAD rounded up to the
// nearest suitable size boundary.
const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1);

// Choose a relatively small default initial chunk size, since we double chunk
// sizes as we grow bump arenas to amortize costs of hitting the global
// allocator.
const FIRST_ALLOCATION_GOAL: usize = 1 << 9;

// The actual size of the first allocation is going to be a bit smaller
// than the goal. We need to make room for the footer, and we also need
// take the alignment into account.
const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;

/// Wrapper around `Layout::from_size_align` that adds debug assertions.
#[inline]
unsafe fn layout_from_size_align(size: usize, align: usize) -> Layout {
    if cfg!(debug_assertions) {
        Layout::from_size_align(size, align).unwrap()
    } else {
        Layout::from_size_align_unchecked(size, align)
    }
}

#[inline(never)]
fn allocation_size_overflow<T>() -> T {
    panic!("requested allocation size overflowed")
}

impl Bump {
    /// Construct a new arena to bump allocate into.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// # let _ = bump;
    /// ```
    pub fn new() -> Bump {
        Self::with_capacity(0)
    }

    /// Attempt to construct a new arena to bump allocate into.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::try_new();
    /// # let _ = bump.unwrap();
    /// ```
    pub fn try_new() -> Result<Bump, alloc::AllocErr> {
        Bump::try_with_capacity(0)
    }

    /// Construct a new arena with the specified byte capacity to bump allocate into.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::with_capacity(100);
    /// # let _ = bump;
    /// ```
    pub fn with_capacity(capacity: usize) -> Bump {
        Bump::try_with_capacity(capacity).unwrap_or_else(|_| oom())
    }

    /// Attempt to construct a new arena with the specified byte capacity to bump allocate into.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::try_with_capacity(100);
    /// # let _ = bump.unwrap();
    /// ```
    pub fn try_with_capacity(capacity: usize) -> Result<Self, alloc::AllocErr> {
        let chunk_footer = Self::new_chunk(
            None,
            Some(unsafe { layout_from_size_align(capacity, 1) }),
            None,
        )
        .ok_or(alloc::AllocErr {})?;

        Ok(Bump {
            current_chunk_footer: Cell::new(chunk_footer),
        })
    }

    /// Allocate a new chunk and return its initialized footer.
    ///
    /// If given, `layouts` is a tuple of the current chunk size and the
    /// layout of the allocation request that triggered us to fall back to
    /// allocating a new chunk of memory.
    fn new_chunk(
        new_size_without_footer: Option<usize>,
        requested_layout: Option<Layout>,
        prev: Option<NonNull<ChunkFooter>>,
    ) -> Option<NonNull<ChunkFooter>> {
        unsafe {
            let mut new_size_without_footer =
                new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);

            // We want to have CHUNK_ALIGN or better alignment
            let mut align = CHUNK_ALIGN;

            // If we already know we need to fulfill some request,
            // make sure we allocate at least enough to satisfy it
            if let Some(requested_layout) = requested_layout {
                align = align.max(requested_layout.align());
                let requested_size = round_up_to(requested_layout.size(), align)
                    .unwrap_or_else(allocation_size_overflow);
                new_size_without_footer = new_size_without_footer.max(requested_size);
            }

            // We want our allocations to play nice with the memory allocator,
            // and waste as little memory as possible.
            // For small allocations, this means that the entire allocation
            // including the chunk footer and mallocs internal overhead is
            // as close to a power of two as we can go without going over.
            // For larger allocations, we only need to get close to a page
            // boundary without going over.
            if new_size_without_footer < PAGE_STRATEGY_CUTOFF {
                new_size_without_footer =
                    (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
            } else {
                new_size_without_footer =
                    round_up_to(new_size_without_footer + OVERHEAD, 0x1000)? - OVERHEAD;
            }

            debug_assert_eq!(align % CHUNK_ALIGN, 0);
            debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
            let size = new_size_without_footer
                .checked_add(FOOTER_SIZE)
                .unwrap_or_else(allocation_size_overflow);
            let layout = layout_from_size_align(size, align);

            debug_assert!(requested_layout.map_or(true, |layout| size >= layout.size()));

            let data = alloc(layout);
            let data = NonNull::new(data)?;

            // The `ChunkFooter` is at the end of the chunk.
            let footer_ptr = data.as_ptr() as usize + new_size_without_footer;
            debug_assert_eq!((data.as_ptr() as usize) % align, 0);
            debug_assert_eq!(footer_ptr % CHUNK_ALIGN, 0);
            let footer_ptr = footer_ptr as *mut ChunkFooter;

            // The bump pointer is initialized to the end of the range we will
            // bump out of.
            let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8));

            ptr::write(
                footer_ptr,
                ChunkFooter {
                    data,
                    layout,
                    prev: Cell::new(prev),
                    ptr,
                },
            );

            Some(NonNull::new_unchecked(footer_ptr))
        }
    }

    /// Reset this bump allocator.
    ///
    /// Performs mass deallocation on everything allocated in this arena by
    /// resetting the pointer into the underlying chunk of memory to the start
    /// of the chunk. Does not run any `Drop` implementations on deallocated
    /// objects; see [the `Bump` type's top-level
    /// documentation](./struct.Bump.html) for details.
    ///
    /// If this arena has allocated multiple chunks to bump allocate into, then
    /// the excess chunks are returned to the global allocator.
    ///
    /// ## Example
    ///
    /// ```
    /// let mut bump = bumpalo::Bump::new();
    ///
    /// // Allocate a bunch of things.
    /// {
    ///     for i in 0..100 {
    ///         bump.alloc(i);
    ///     }
    /// }
    ///
    /// // Reset the arena.
    /// bump.reset();
    ///
    /// // Allocate some new things in the space previously occupied by the
    /// // original things.
    /// for j in 200..400 {
    ///     bump.alloc(j);
    /// }
    ///```
    pub fn reset(&mut self) {
        // Takes `&mut self` so `self` must be unique and there can't be any
        // borrows active that would get invalidated by resetting.
        unsafe {
            let cur_chunk = self.current_chunk_footer.get();

            // Deallocate all chunks except the current one
            let prev_chunk = cur_chunk.as_ref().prev.replace(None);
            dealloc_chunk_list(prev_chunk);

            // Reset the bump finger to the end of the chunk.
            cur_chunk.as_ref().ptr.set(cur_chunk.cast());

            debug_assert!(
                self.current_chunk_footer
                    .get()
                    .as_ref()
                    .prev
                    .get()
                    .is_none(),
                "We should only have a single chunk"
            );
            debug_assert_eq!(
                self.current_chunk_footer.get().as_ref().ptr.get(),
                self.current_chunk_footer.get().cast(),
                "Our chunk's bump finger should be reset to the start of its allocation"
            );
        }
    }

    /// Allocate an object in this `Bump` and return an exclusive reference to
    /// it.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for `T` fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc("hello");
    /// assert_eq!(*x, "hello");
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc<T>(&self, val: T) -> &mut T {
        self.alloc_with(|| val)
    }

    /// Try to allocate an object in this `Bump` and return an exclusive
    /// reference to it.
    ///
    /// ## Errors
    ///
    /// Errors if reserving space for `T` fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.try_alloc("hello");
    /// assert_eq!(x, Ok(&mut"hello"));
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn try_alloc<T>(&self, val: T) -> Result<&mut T, alloc::AllocErr> {
        self.try_alloc_with(|| val)
    }

    /// Pre-allocate space for an object in this `Bump`, initializes it using
    /// the closure, then returns an exclusive reference to it.
    ///
    /// See [The `_with` Method Suffix](#the-_with-method-suffix) for a
    /// discussion on the differences between the `_with` suffixed methods and
    /// those methods without it, their performance characteristics, and when
    /// you might or might not choose a `_with` suffixed method.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for `T` fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_with(|| "hello");
    /// assert_eq!(*x, "hello");
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_with<F, T>(&self, f: F) -> &mut T
    where
        F: FnOnce() -> T,
    {
        #[inline(always)]
        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
        where
            F: FnOnce() -> T,
        {
            // This function is translated as:
            // - allocate space for a T on the stack
            // - call f() with the return value being put onto this stack space
            // - memcpy from the stack to the heap
            //
            // Ideally we want LLVM to always realize that doing a stack
            // allocation is unnecessary and optimize the code so it writes
            // directly into the heap instead. It seems we get it to realize
            // this most consistently if we put this critical line into it's
            // own function instead of inlining it into the surrounding code.
            ptr::write(ptr, f())
        }

        let layout = Layout::new::<T>();

        unsafe {
            let p = self.alloc_layout(layout);
            let p = p.as_ptr() as *mut T;
            inner_writer(p, f);
            &mut *p
        }
    }

    /// Tries to pre-allocate space for an object in this `Bump`, initializes
    /// it using the closure, then returns an exclusive reference to it.
    ///
    /// See [The `_with` Method Suffix](#the-_with-method-suffix) for a
    /// discussion on the differences between the `_with` suffixed methods and
    /// those methods without it, their performance characteristics, and when
    /// you might or might not choose a `_with` suffixed method.
    ///
    /// ## Errors
    ///
    /// Errors if reserving space for `T` fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.try_alloc_with(|| "hello");
    /// assert_eq!(x, Ok(&mut "hello"));
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn try_alloc_with<F, T>(&self, f: F) -> Result<&mut T, alloc::AllocErr>
    where
        F: FnOnce() -> T,
    {
        #[inline(always)]
        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
        where
            F: FnOnce() -> T,
        {
            // This function is translated as:
            // - allocate space for a T on the stack
            // - call f() with the return value being put onto this stack space
            // - memcpy from the stack to the heap
            //
            // Ideally we want LLVM to always realize that doing a stack
            // allocation is unnecessary and optimize the code so it writes
            // directly into the heap instead. It seems we get it to realize
            // this most consistently if we put this critical line into it's
            // own function instead of inlining it into the surrounding code.
            ptr::write(ptr, f())
        }

        //SAFETY: Self-contained:
        // `p` is allocated for `T` and then a `T` is written.
        let layout = Layout::new::<T>();
        let p = self.try_alloc_layout(layout)?;
        let p = p.as_ptr() as *mut T;

        unsafe {
            inner_writer(p, f);
            Ok(&mut *p)
        }
    }

    /// Pre-allocates space for a [`Result`] in this `Bump`, initializes it using
    /// the closure, then returns an exclusive reference to its `T` if [`Ok`].
    ///
    /// Iff the allocation fails, the closure is not run.
    ///
    /// Iff [`Err`], an allocator rewind is *attempted* and the `E` instance is
    /// moved out of the allocator to be consumed or dropped as normal.
    ///
    /// See [The `_with` Method Suffix](#the-_with-method-suffix) for a
    /// discussion on the differences between the `_with` suffixed methods and
    /// those methods without it, their performance characteristics, and when
    /// you might or might not choose a `_with` suffixed method.
    ///
    /// For caveats specific to fallible initialization, see
    /// [The `_try_with` Method Suffix](#the-_try_with-method-suffix).
    ///
    /// ## Errors
    ///
    /// Iff the allocation succeeds but `f` fails, that error is forwarded by value.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for `Result<T, E>` fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_try_with(|| Ok("hello"))?;
    /// assert_eq!(*x, "hello");
    /// # Result::<_, ()>::Ok(())
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, E>
    where
        F: FnOnce() -> Result<T, E>,
    {
        let rewind_footer = self.current_chunk_footer.get();
        let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
        let mut inner_result_ptr = NonNull::from(self.alloc_with(f));
        let inner_result_address = inner_result_ptr.as_ptr() as usize;
        match unsafe { inner_result_ptr.as_mut() } {
            Ok(t) => Ok(unsafe {
                //SAFETY:
                // The `&mut Result<T, E>` returned by `alloc_with` may be
                // lifetime-limited by `E`, but the derived `&mut T` still has
                // the same validity as in `alloc_with` since the error variant
                // is already ruled out here.

                // We could conditionally truncate the allocation here, but
                // since it grows backwards, it seems unlikely that we'd get
                // any more than the `Result`'s discriminant this way, if
                // anything at all.
                &mut *(t as *mut _)
            }),
            Err(e) => unsafe {
                // If this result was the last allocation in this arena, we can
                // reclaim its space. In fact, sometimes we can do even better
                // than simply calling `dealloc` on the result pointer: we can
                // reclaim any alignment padding we might have added (which
                // `dealloc` cannot do) if we didn't allocate a new chunk for
                // this result.
                if self.is_last_allocation(NonNull::new_unchecked(inner_result_address as *mut _)) {
                    let current_footer_p = self.current_chunk_footer.get();
                    let current_ptr = &current_footer_p.as_ref().ptr;
                    if current_footer_p == rewind_footer {
                        // It's still the same chunk, so reset the bump pointer
                        // to its original value upon entry to this method
                        // (reclaiming any alignment padding we may have
                        // added).
                        current_ptr.set(rewind_ptr);
                    } else {
                        // We allocated a new chunk for this result.
                        //
                        // We know the result is the only allocation in this
                        // chunk: Any additional allocations since the start of
                        // this method could only have happened when running
                        // the initializer function, which is called *after*
                        // reserving space for this result. Therefore, since we
                        // already determined via the check above that this
                        // result was the last allocation, there must not have
                        // been any other allocations, and this result is the
                        // only allocation in this chunk.
                        //
                        // Because this is the only allocation in this chunk,
                        // we can reset the chunk's bump finger to the start of
                        // the chunk.
                        current_ptr.set(current_footer_p.as_ref().data);
                    }
                }
                //SAFETY:
                // As we received `E` semantically by value from `f`, we can
                // just copy that value here as long as we avoid a double-drop
                // (which can't happen as any specific references to the `E`'s
                // data in `self` are destroyed when this function returns).
                //
                // The order between this and the deallocation doesn't matter
                // because `Self: !Sync`.
                Err(ptr::read(e as *const _))
            },
        }
    }

    /// Tries to pre-allocates space for a [`Result`] in this `Bump`,
    /// initializes it using the closure, then returns an exclusive reference
    /// to its `T` if all [`Ok`].
    ///
    /// Iff the allocation fails, the closure is not run.
    ///
    /// Iff the closure returns [`Err`], an allocator rewind is *attempted* and
    /// the `E` instance is moved out of the allocator to be consumed or dropped
    /// as normal.
    ///
    /// See [The `_with` Method Suffix](#the-_with-method-suffix) for a
    /// discussion on the differences between the `_with` suffixed methods and
    /// those methods without it, their performance characteristics, and when
    /// you might or might not choose a `_with` suffixed method.
    ///
    /// For caveats specific to fallible initialization, see
    /// [The `_try_with` Method Suffix](#the-_try_with-method-suffix).
    ///
    /// ## Errors
    ///
    /// Errors with the [`Alloc`](`AllocOrInitError::Alloc`) variant iff
    /// reserving space for `Result<T, E>` fails.
    ///
    /// Iff the allocation succeeds but `f` fails, that error is forwarded by
    /// value inside the [`Init`](`AllocOrInitError::Init`) variant.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.try_alloc_try_with(|| Ok("hello"))?;
    /// assert_eq!(*x, "hello");
    /// # Result::<_, bumpalo::AllocOrInitError<()>>::Ok(())
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn try_alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, AllocOrInitError<E>>
    where
        F: FnOnce() -> Result<T, E>,
    {
        let rewind_footer = self.current_chunk_footer.get();
        let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get();
        let mut inner_result_ptr = NonNull::from(self.try_alloc_with(f)?);
        let inner_result_address = inner_result_ptr.as_ptr() as usize;
        match unsafe { inner_result_ptr.as_mut() } {
            Ok(t) => Ok(unsafe {
                //SAFETY:
                // The `&mut Result<T, E>` returned by `alloc_with` may be
                // lifetime-limited by `E`, but the derived `&mut T` still has
                // the same validity as in `alloc_with` since the error variant
                // is already ruled out here.

                // We could conditionally truncate the allocation here, but
                // since it grows backwards, it seems unlikely that we'd get
                // any more than the `Result`'s discriminant this way, if
                // anything at all.
                &mut *(t as *mut _)
            }),
            Err(e) => unsafe {
                // If this result was the last allocation in this arena, we can
                // reclaim its space. In fact, sometimes we can do even better
                // than simply calling `dealloc` on the result pointer: we can
                // reclaim any alignment padding we might have added (which
                // `dealloc` cannot do) if we didn't allocate a new chunk for
                // this result.
                if self.is_last_allocation(NonNull::new_unchecked(inner_result_address as *mut _)) {
                    let current_footer_p = self.current_chunk_footer.get();
                    let current_ptr = &current_footer_p.as_ref().ptr;
                    if current_footer_p == rewind_footer {
                        // It's still the same chunk, so reset the bump pointer
                        // to its original value upon entry to this method
                        // (reclaiming any alignment padding we may have
                        // added).
                        current_ptr.set(rewind_ptr);
                    } else {
                        // We allocated a new chunk for this result.
                        //
                        // We know the result is the only allocation in this
                        // chunk: Any additional allocations since the start of
                        // this method could only have happened when running
                        // the initializer function, which is called *after*
                        // reserving space for this result. Therefore, since we
                        // already determined via the check above that this
                        // result was the last allocation, there must not have
                        // been any other allocations, and this result is the
                        // only allocation in this chunk.
                        //
                        // Because this is the only allocation in this chunk,
                        // we can reset the chunk's bump finger to the start of
                        // the chunk.
                        current_ptr.set(current_footer_p.as_ref().data);
                    }
                }
                //SAFETY:
                // As we received `E` semantically by value from `f`, we can
                // just copy that value here as long as we avoid a double-drop
                // (which can't happen as any specific references to the `E`'s
                // data in `self` are destroyed when this function returns).
                //
                // The order between this and the deallocation doesn't matter
                // because `Self: !Sync`.
                Err(AllocOrInitError::Init(ptr::read(e as *const _)))
            },
        }
    }

    /// `Copy` a slice into this `Bump` and return an exclusive reference to
    /// the copy.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_copy(&[1, 2, 3]);
    /// assert_eq!(x, &[1, 2, 3]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
    where
        T: Copy,
    {
        let layout = Layout::for_value(src);
        let dst = self.alloc_layout(layout).cast::<T>();

        unsafe {
            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
        }
    }

    /// `Clone` a slice into this `Bump` and return an exclusive reference to
    /// the clone. Prefer `alloc_slice_copy` if `T` is `Copy`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails.
    ///
    /// ## Example
    ///
    /// ```
    /// #[derive(Clone, Debug, Eq, PartialEq)]
    /// struct Sheep {
    ///     name: String,
    /// }
    ///
    /// let originals = vec![
    ///     Sheep { name: "Alice".into() },
    ///     Sheep { name: "Bob".into() },
    ///     Sheep { name: "Cathy".into() },
    /// ];
    ///
    /// let bump = bumpalo::Bump::new();
    /// let clones = bump.alloc_slice_clone(&originals);
    /// assert_eq!(originals, clones);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
    where
        T: Clone,
    {
        let layout = Layout::for_value(src);
        let dst = self.alloc_layout(layout).cast::<T>();

        unsafe {
            for (i, val) in src.iter().cloned().enumerate() {
                ptr::write(dst.as_ptr().add(i), val);
            }

            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
        }
    }

    /// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the string fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let hello = bump.alloc_str("hello world");
    /// assert_eq!("hello world", hello);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_str(&self, src: &str) -> &mut str {
        let buffer = self.alloc_slice_copy(src.as_bytes());
        unsafe {
            // This is OK, because it already came in as str, so it is guaranteed to be utf8
            str::from_utf8_unchecked_mut(buffer)
        }
    }

    /// Allocates a new slice of size `len` into this `Bump` and returns an
    /// exclusive reference to the copy.
    ///
    /// The elements of the slice are initialized using the supplied closure.
    /// The closure argument is the position in the slice.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_fill_with(5, |i| 5*(i+1));
    /// assert_eq!(x, &[5, 10, 15, 20, 25]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
    where
        F: FnMut(usize) -> T,
    {
        let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom());
        let dst = self.alloc_layout(layout).cast::<T>();

        unsafe {
            for i in 0..len {
                ptr::write(dst.as_ptr().add(i), f(i));
            }

            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
            debug_assert_eq!(Layout::for_value(result), layout);
            result
        }
    }

    /// Allocates a new slice of size `len` into this `Bump` and returns an
    /// exclusive reference to the copy.
    ///
    /// All elements of the slice are initialized to `value`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_fill_copy(5, 42);
    /// assert_eq!(x, &[42, 42, 42, 42, 42]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
        self.alloc_slice_fill_with(len, |_| value)
    }

    /// Allocates a new slice of size `len` slice into this `Bump` and return an
    /// exclusive reference to the copy.
    ///
    /// All elements of the slice are initialized to `value.clone()`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let s: String = "Hello Bump!".to_string();
    /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
    /// assert_eq!(x.len(), 2);
    /// assert_eq!(&x[0], &s);
    /// assert_eq!(&x[1], &s);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
        self.alloc_slice_fill_with(len, |_| value.clone())
    }

    /// Allocates a new slice of size `len` slice into this `Bump` and return an
    /// exclusive reference to the copy.
    ///
    /// The elements are initialized using the supplied iterator.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails, or if the supplied
    /// iterator returns fewer elements than it promised.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
    /// assert_eq!(x, [4, 9, 25]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
    where
        I: IntoIterator<Item = T>,
        I::IntoIter: ExactSizeIterator,
    {
        let mut iter = iter.into_iter();
        self.alloc_slice_fill_with(iter.len(), |_| {
            iter.next().expect("Iterator supplied too few elements")
        })
    }

    /// Allocates a new slice of size `len` slice into this `Bump` and return an
    /// exclusive reference to the copy.
    ///
    /// All elements of the slice are initialized to `T::default()`.
    ///
    /// ## Panics
    ///
    /// Panics if reserving space for the slice fails.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let x = bump.alloc_slice_fill_default::<u32>(5);
    /// assert_eq!(x, &[0, 0, 0, 0, 0]);
    /// ```
    #[inline(always)]
    #[allow(clippy::mut_from_ref)]
    pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
        self.alloc_slice_fill_with(len, |_| T::default())
    }

    /// Allocate space for an object with the given `Layout`.
    ///
    /// The returned pointer points at uninitialized memory, and should be
    /// initialized with
    /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
    ///
    /// # Panics
    ///
    /// Panics if reserving space matching `layout` fails.
    #[inline(always)]
    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
        self.try_alloc_layout(layout).unwrap_or_else(|_| oom())
    }

    /// Attempts to allocate space for an object with the given `Layout` or else returns
    /// an `Err`.
    ///
    /// The returned pointer points at uninitialized memory, and should be
    /// initialized with
    /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html).
    ///
    /// # Errors
    ///
    /// Errors if reserving space matching `layout` fails.
    #[inline(always)]
    pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> {
        if let Some(p) = self.try_alloc_layout_fast(layout) {
            Ok(p)
        } else {
            self.alloc_layout_slow(layout).ok_or(alloc::AllocErr {})
        }
    }

    #[inline(always)]
    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
        // We don't need to check for ZSTs here since they will automatically
        // be handled properly: the pointer will be bumped by zero bytes,
        // modulo alignment. This keeps the fast path optimized for non-ZSTs,
        // which are much more common.
        unsafe {
            let footer = self.current_chunk_footer.get();
            let footer = footer.as_ref();
            let ptr = footer.ptr.get().as_ptr() as usize;
            let start = footer.data.as_ptr() as usize;
            debug_assert!(start <= ptr);
            debug_assert!(ptr <= footer as *const _ as usize);

            let ptr = ptr.checked_sub(layout.size())?;
            let aligned_ptr = ptr & !(layout.align() - 1);

            if aligned_ptr >= start {
                let aligned_ptr = NonNull::new_unchecked(aligned_ptr as *mut u8);
                footer.ptr.set(aligned_ptr);
                Some(aligned_ptr)
            } else {
                None
            }
        }
    }

    /// Gets the remaining capacity in the current chunk (in bytes).
    ///
    /// ## Example
    ///
    /// ```
    /// use bumpalo::Bump;
    ///
    /// let bump = Bump::with_capacity(100);
    ///
    /// let capacity = bump.chunk_capacity();
    /// assert!(capacity >= 100);
    /// ```
    pub fn chunk_capacity(&self) -> usize {
        let current_footer = self.current_chunk_footer.get();
        let current_footer = unsafe { current_footer.as_ref() };

        current_footer as *const _ as usize - current_footer.data.as_ptr() as usize
    }

    /// Slow path allocation for when we need to allocate a new chunk from the
    /// parent bump set because there isn't enough room in our current chunk.
    #[inline(never)]
    fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> {
        unsafe {
            let size = layout.size();

            // Get a new chunk from the global allocator.
            let current_footer = self.current_chunk_footer.get();
            let current_layout = current_footer.as_ref().layout;

            // By default, we want our new chunk to be about twice as big
            // as the previous chunk. If the global allocator refuses it,
            // we try to divide it by half until it works or the requested
            // size is smaller than the default footer size.
            let min_new_chunk_size = layout.size().max(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER);
            let mut base_size = (current_layout.size() - FOOTER_SIZE)
                .checked_mul(2)?
                .max(min_new_chunk_size);
            let sizes = iter::from_fn(|| {
                if base_size >= min_new_chunk_size {
                    let size = base_size;
                    base_size = base_size / 2;
                    Some(size)
                } else {
                    None
                }
            });

            let new_footer = sizes
                .filter_map(|size| Bump::new_chunk(Some(size), Some(layout), Some(current_footer)))
                .next()?;

            debug_assert_eq!(
                new_footer.as_ref().data.as_ptr() as usize % layout.align(),
                0
            );

            // Set the new chunk as our new current chunk.
            self.current_chunk_footer.set(new_footer);

            let new_footer = new_footer.as_ref();

            // Move the bump ptr finger down to allocate room for `val`. We know
            // this can't overflow because we successfully allocated a chunk of
            // at least the requested size.
            let ptr = new_footer.ptr.get().as_ptr() as usize - size;
            // Round the pointer down to the requested alignment.
            let ptr = ptr & !(layout.align() - 1);
            debug_assert!(
                ptr <= new_footer as *const _ as usize,
                "{:#x} <= {:#x}",
                ptr,
                new_footer as *const _ as usize
            );
            let ptr = NonNull::new_unchecked(ptr as *mut u8);
            new_footer.ptr.set(ptr);

            // Return a pointer to the freshly allocated region in this chunk.
            Some(ptr)
        }
    }

    /// Returns an iterator over each chunk of allocated memory that
    /// this arena has bump allocated into.
    ///
    /// The chunks are returned ordered by allocation time, with the most
    /// recently allocated chunk being returned first, and the least recently
    /// allocated chunk being returned last.
    ///
    /// The values inside each chunk are also ordered by allocation time, with
    /// the most recent allocation being earlier in the slice, and the least
    /// recent allocation being towards the end of the slice.
    ///
    /// ## Safety
    ///
    /// Because this method takes `&mut self`, we know that the bump arena
    /// reference is unique and therefore there aren't any active references to
    /// any of the objects we've allocated in it either. This potential aliasing
    /// of exclusive references is one common footgun for unsafe code that we
    /// don't need to worry about here.
    ///
    /// However, there could be regions of uninitialized memory used as padding
    /// between allocations, which is why this iterator has items of type
    /// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
    ///
    /// The only way to guarantee that there is no padding between allocations
    /// or within allocated objects is if all of these properties hold:
    ///
    /// 1. Every object allocated in this arena has the same alignment,
    ///    and that alignment is at most 16.
    /// 2. Every object's size is a multiple of its alignment.
    /// 3. None of the objects allocated in this arena contain any internal
    ///    padding.
    ///
    /// If you want to use this `iter_allocated_chunks` method, it is *your*
    /// responsibility to ensure that these properties hold before calling
    /// `MaybeUninit::assume_init` or otherwise reading the returned values.
    ///
    /// Finally, you must also ensure that any values allocated into the bump
    /// arena have not had their `Drop` implementations called on them,
    /// e.g. after dropping a [`bumpalo::boxed::Box<T>`][crate::boxed::Box].
    ///
    /// ## Example
    ///
    /// ```
    /// let mut bump = bumpalo::Bump::new();
    ///
    /// // Allocate a bunch of `i32`s in this bump arena, potentially causing
    /// // additional memory chunks to be reserved.
    /// for i in 0..10000 {
    ///     bump.alloc(i);
    /// }
    ///
    /// // Iterate over each chunk we've bump allocated into. This is safe
    /// // because we have only allocated `i32`s in this arena, which fulfills
    /// // the above requirements.
    /// for ch in bump.iter_allocated_chunks() {
    ///     println!("Used a chunk that is {} bytes long", ch.len());
    ///     println!("The first byte is {:?}", unsafe {
    ///         ch.get(0).unwrap().assume_init()
    ///     });
    /// }
    ///
    /// // Within a chunk, allocations are ordered from most recent to least
    /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
    /// // through the chunk's data, we get them in the order 'c', then 'b',
    /// // then 'a'.
    ///
    /// bump.reset();
    /// bump.alloc(b'a');
    /// bump.alloc(b'b');
    /// bump.alloc(b'c');
    ///
    /// assert_eq!(bump.iter_allocated_chunks().count(), 1);
    /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
    /// assert_eq!(chunk.len(), 3);
    ///
    /// // Safe because we've only allocated `u8`s in this arena, which
    /// // fulfills the above requirements.
    /// unsafe {
    ///     assert_eq!(chunk[0].assume_init(), b'c');
    ///     assert_eq!(chunk[1].assume_init(), b'b');
    ///     assert_eq!(chunk[2].assume_init(), b'a');
    /// }
    /// ```
    pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> {
        ChunkIter {
            footer: Some(self.current_chunk_footer.get()),
            bump: PhantomData,
        }
    }

    /// Calculates the number of bytes currently allocated across all chunks in
    /// this bump arena.
    ///
    /// If you allocate types of different alignments or types with
    /// larger-than-typical alignment in the same arena, some padding
    /// bytes might get allocated in the bump arena. Note that those padding
    /// bytes will add to this method's resulting sum, so you cannot rely
    /// on it only counting the sum of the sizes of the things
    /// you've allocated in the arena.
    ///
    /// ## Example
    ///
    /// ```
    /// let bump = bumpalo::Bump::new();
    /// let _x = bump.alloc_slice_fill_default::<u32>(5);
    /// let bytes = bump.allocated_bytes();
    /// assert!(bytes >= core::mem::size_of::<u32>() * 5);
    /// ```
    pub fn allocated_bytes(&self) -> usize {
        let mut footer = Some(self.current_chunk_footer.get());

        let mut bytes = 0;

        while let Some(f) = footer {
            let foot = unsafe { f.as_ref() };

            let ptr = foot.ptr.get().as_ptr() as usize;
            debug_assert!(ptr <= foot as *const _ as usize);

            bytes += foot as *const _ as usize - ptr;

            footer = foot.prev.get();
        }

        bytes
    }

    #[inline]
    unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
        let footer = self.current_chunk_footer.get();
        let footer = footer.as_ref();
        footer.ptr.get() == ptr
    }

    #[inline]
    unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) {
        // If the pointer is the last allocation we made, we can reuse the bytes,
        // otherwise they are simply leaked -- at least until somebody calls reset().
        if self.is_last_allocation(ptr) {
            let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size()));
            self.current_chunk_footer.get().as_ref().ptr.set(ptr);
        }
    }

    #[inline]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<NonNull<u8>, alloc::AllocErr> {
        let old_size = layout.size();
        if self.is_last_allocation(ptr)
                // Only reclaim the excess space (which requires a copy) if it
                // is worth it: we are actually going to recover "enough" space
                // and we can do a non-overlapping copy.
                && new_size <= old_size / 2
        {
            let delta = old_size - new_size;
            let footer = self.current_chunk_footer.get();
            let footer = footer.as_ref();
            footer
                .ptr
                .set(NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta)));
            let new_ptr = footer.ptr.get();
            // NB: we know it is non-overlapping because of the size check
            // in the `if` condition.
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
            return Ok(new_ptr);
        } else {
            return Ok(ptr);
        }
    }

    #[inline]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<NonNull<u8>, alloc::AllocErr> {
        let old_size = layout.size();
        if self.is_last_allocation(ptr) {
            // Try to allocate the delta size within this same block so we can
            // reuse the currently allocated space.
            let delta = new_size - old_size;
            if let Some(p) =
                self.try_alloc_layout_fast(layout_from_size_align(delta, layout.align()))
            {
                ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
                return Ok(p);
            }
        }

        // Fallback: do a fresh allocation and copy the existing data into it.
        let new_layout = layout_from_size_align(new_size, layout.align());
        let new_ptr = self.try_alloc_layout(new_layout)?;
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
        Ok(new_ptr)
    }
}

/// An iterator over each chunk of allocated memory that
/// an arena has bump allocated into.
///
/// The chunks are returned ordered by allocation time, with the most recently
/// allocated chunk being returned first.
///
/// The values inside each chunk is also ordered by allocation time, with the most
/// recent allocation being earlier in the slice.
///
/// This struct is created by the [`iter_allocated_chunks`] method on
/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
///
/// [`Bump`]: ./struct.Bump.html
/// [`iter_allocated_chunks`]: ./struct.Bump.html#method.iter_allocated_chunks
#[derive(Debug)]
pub struct ChunkIter<'a> {
    footer: Option<NonNull<ChunkFooter>>,
    bump: PhantomData<&'a mut Bump>,
}

impl<'a> Iterator for ChunkIter<'a> {
    type Item = &'a [mem::MaybeUninit<u8>];
    fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> {
        unsafe {
            let foot = self.footer?;
            let foot = foot.as_ref();
            let data = foot.data.as_ptr() as usize;
            let ptr = foot.ptr.get().as_ptr() as usize;
            debug_assert!(data <= ptr);
            debug_assert!(ptr <= foot as *const _ as usize);

            let len = foot as *const _ as usize - ptr;
            let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
            self.footer = foot.prev.get();
            Some(slice)
        }
    }
}

impl<'a> iter::FusedIterator for ChunkIter<'a> {}

#[inline(never)]
#[cold]
fn oom() -> ! {
    panic!("out of memory")
}

unsafe impl<'a> alloc::Alloc for &'a Bump {
    #[inline(always)]
    unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> {
        self.try_alloc_layout(layout)
    }

    #[inline]
    unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
        Bump::dealloc(self, ptr, layout)
    }

    #[inline]
    unsafe fn realloc(
        &mut self,
        ptr: NonNull<u8>,
        layout: Layout,
        new_size: usize,
    ) -> Result<NonNull<u8>, alloc::AllocErr> {
        let old_size = layout.size();

        if old_size == 0 {
            return self.try_alloc_layout(layout);
        }

        if new_size <= old_size {
            self.shrink(ptr, layout, new_size)
        } else {
            self.grow(ptr, layout, new_size)
        }
    }
}

#[cfg(feature = "allocator_api")]
unsafe impl<'a> Allocator for &'a Bump {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        self.try_alloc_layout(layout)
            .map(|p| NonNull::slice_from_raw_parts(p, layout.size()))
            .map_err(|_| AllocError)
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        Bump::dealloc(self, ptr, layout)
    }

    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let new_size = new_layout.size();
        Bump::shrink(self, ptr, old_layout, new_size)
            .map(|p| NonNull::slice_from_raw_parts(p, new_size))
            .map_err(|_| AllocError)
    }

    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let new_size = new_layout.size();
        Bump::grow(self, ptr, old_layout, new_size)
            .map(|p| NonNull::slice_from_raw_parts(p, new_size))
            .map_err(|_| AllocError)
    }

    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let mut ptr = self.grow(ptr, old_layout, new_layout)?;
        ptr.as_mut()[old_layout.size()..].fill(0);
        Ok(ptr)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn chunk_footer_is_five_words() {
        assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 5);
    }

    #[test]
    #[allow(clippy::cognitive_complexity)]
    fn test_realloc() {
        use crate::alloc::Alloc;

        unsafe {
            const CAPACITY: usize = 1024 - OVERHEAD;
            let mut b = Bump::with_capacity(CAPACITY);

            // `realloc` doesn't shrink allocations that aren't "worth it".
            let layout = Layout::from_size_align(100, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 51).unwrap();
            assert_eq!(p, q);
            b.reset();

            // `realloc` will shrink allocations that are "worth it".
            let layout = Layout::from_size_align(100, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 50).unwrap();
            assert!(p != q);
            b.reset();

            // `realloc` will reuse the last allocation when growing.
            let layout = Layout::from_size_align(10, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 11).unwrap();
            assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
            b.reset();

            // `realloc` will allocate a new chunk when growing the last
            // allocation, if need be.
            let layout = Layout::from_size_align(1, 1).unwrap();
            let p = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
            assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY);
            b = Bump::with_capacity(CAPACITY);

            // `realloc` will allocate and copy when reallocating anything that
            // wasn't the last allocation.
            let layout = Layout::from_size_align(1, 1).unwrap();
            let p = b.alloc_layout(layout);
            let _ = b.alloc_layout(layout);
            let q = (&b).realloc(p, layout, 2).unwrap();
            assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
            b.reset();
        }
    }

    #[test]
    fn invalid_read() {
        use alloc::Alloc;

        let mut b = &Bump::new();

        unsafe {
            let l1 = Layout::from_size_align(12000, 4).unwrap();
            let p1 = Alloc::alloc(&mut b, l1).unwrap();

            let l2 = Layout::from_size_align(1000, 4).unwrap();
            Alloc::alloc(&mut b, l2).unwrap();

            let p1 = b.realloc(p1, l1, 24000).unwrap();
            let l3 = Layout::from_size_align(24000, 4).unwrap();
            b.realloc(p1, l3, 48000).unwrap();
        }
    }
}