1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "serde-serialize-no-std")]
use crate::base::storage::Owned;
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::RealField;
use simba::simd::SimdRealField;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{Const, DefaultAllocator, OMatrix, SMatrix, SVector, Scalar, Unit};
use crate::geometry::Point;
/// A rotation matrix.
///
/// This is also known as an element of a Special Orthogonal (SO) group.
/// The `Rotation` type can either represent a 2D or 3D rotation, represented as a matrix.
/// For a rotation based on quaternions, see [`UnitQuaternion`](crate::UnitQuaternion) instead.
///
/// Note that instead of using the [`Rotation`](crate::Rotation) type in your code directly, you should use one
/// of its aliases: [`Rotation2`](crate::Rotation2), or [`Rotation3`](crate::Rotation3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
/// * [From a 2D rotation angle <span style="float:right;">`new`…</span>](#construction-from-a-2d-rotation-angle)
/// * [From an existing 2D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-rotations)
/// * [From a 3D axis and/or angles <span style="float:right;">`new`, `from_euler_angles`, `from_axis_angle`…</span>](#construction-from-a-3d-axis-andor-angles)
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `rotation_between`…</span>](#construction-from-a-3d-eye-position-and-target-point)
/// * [From an existing 3D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-3d-matrix-or-rotations)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `rotation * point`.
/// Composing an rotation with another transformation can also be done by multiplication or division.
/// * [3D axis and angle extraction <span style="float:right;">`angle`, `euler_angles`, `scaled_axis`, `angle_to`…</span>](#3d-axis-and-angle-extraction)
/// * [2D angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#2d-angle-extraction)
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Transposition and inversion <span style="float:right;">`transpose`, `inverse`…</span>](#transposition-and-inversion)
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
///
/// # Conversion
/// * [Conversion to a matrix <span style="float:right;">`matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<T: Scalar, const D: usize> {
matrix: SMatrix<T, D, D>,
}
impl<T: Scalar + hash::Hash, const D: usize> hash::Hash for Rotation<T, D>
where
<DefaultAllocator as Allocator<T, Const<D>, Const<D>>>::Buffer: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.matrix.hash(state)
}
}
impl<T: Scalar + Copy, const D: usize> Copy for Rotation<T, D> where
<DefaultAllocator as Allocator<T, Const<D>, Const<D>>>::Buffer: Copy
{
}
impl<T: Scalar, const D: usize> Clone for Rotation<T, D>
where
<DefaultAllocator as Allocator<T, Const<D>, Const<D>>>::Buffer: Clone,
{
#[inline]
fn clone(&self) -> Self {
Self::from_matrix_unchecked(self.matrix.clone())
}
}
#[cfg(feature = "abomonation-serialize")]
impl<T, const D: usize> Abomonation for Rotation<T, D>
where
T: Scalar,
SMatrix<T, D, D>: Abomonation,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.matrix.entomb(writer)
}
fn extent(&self) -> usize {
self.matrix.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.matrix.exhume(bytes)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar, const D: usize> Serialize for Rotation<T, D>
where
Owned<T, Const<D>, Const<D>>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Rotation<T, D>
where
Owned<T, Const<D>, Const<D>>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let matrix = SMatrix::<T, D, D>::deserialize(deserializer)?;
Ok(Self::from_matrix_unchecked(matrix))
}
}
impl<T: Scalar, const D: usize> Rotation<T, D> {
/// Creates a new rotation from the given square matrix.
///
/// The matrix squareness is checked but not its orthonormality.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
/// # use std::f32;
/// let mat = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// let rot = Rotation3::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
///
///
/// let mat = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// let rot = Rotation2::from_matrix_unchecked(mat);
///
/// assert_eq!(*rot.matrix(), mat);
/// ```
#[inline]
pub fn from_matrix_unchecked(matrix: SMatrix<T, D, D>) -> Self {
assert!(
matrix.is_square(),
"Unable to create a rotation from a non-square matrix."
);
Self { matrix }
}
}
/// # Conversion to a matrix
impl<T: Scalar, const D: usize> Rotation<T, D> {
/// A reference to the underlying matrix representation of this rotation.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
/// # use std::f32;
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(*rot.matrix(), expected);
///
///
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
/// let expected = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// assert_eq!(*rot.matrix(), expected);
/// ```
#[inline]
pub fn matrix(&self) -> &SMatrix<T, D, D> {
&self.matrix
}
/// A mutable reference to the underlying matrix representation of this rotation.
#[inline]
#[deprecated(note = "Use `.matrix_mut_unchecked()` instead.")]
pub unsafe fn matrix_mut(&mut self) -> &mut SMatrix<T, D, D> {
&mut self.matrix
}
/// A mutable reference to the underlying matrix representation of this rotation.
///
/// This is suffixed by "_unchecked" because this allows the user to replace the matrix by another one that is
/// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
/// subsequent method calls may be UB.
#[inline]
pub fn matrix_mut_unchecked(&mut self) -> &mut SMatrix<T, D, D> {
&mut self.matrix
}
/// Unwraps the underlying matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
/// # use std::f32;
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let mat = rot.into_inner();
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(mat, expected);
///
///
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
/// let mat = rot.into_inner();
/// let expected = Matrix2::new(0.8660254, -0.5,
/// 0.5, 0.8660254);
/// assert_eq!(mat, expected);
/// ```
#[inline]
pub fn into_inner(self) -> SMatrix<T, D, D> {
self.matrix
}
/// Unwraps the underlying matrix.
/// Deprecated: Use [Rotation::into_inner] instead.
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> SMatrix<T, D, D> {
self.matrix
}
/// Converts this rotation into its equivalent homogeneous transformation matrix.
///
/// This is the same as `self.into()`.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix3, Matrix4};
/// # use std::f32;
/// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
/// 0.5, 0.8660254, 0.0, 0.0,
/// 0.0, 0.0, 1.0, 0.0,
/// 0.0, 0.0, 0.0, 1.0);
/// assert_eq!(rot.to_homogeneous(), expected);
///
///
/// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(rot.to_homogeneous(), expected);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
T: Zero + One,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
// We could use `SMatrix::to_homogeneous()` here, but that would imply
// adding the additional traits `DimAdd` and `IsNotStaticOne`. Maybe
// these things will get nicer once specialization lands in Rust.
let mut res = OMatrix::<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>::identity();
res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);
res
}
}
/// # Transposition and inversion
impl<T: Scalar, const D: usize> Rotation<T, D> {
/// Transposes `self`.
///
/// Same as `.inverse()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let tr_rot = rot.transpose();
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let tr_rot = rot.transpose();
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use = "Did you mean to use transpose_mut()?"]
pub fn transpose(&self) -> Self {
Self::from_matrix_unchecked(self.matrix.transpose())
}
/// Inverts `self`.
///
/// Same as `.transpose()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let inv = rot.inverse();
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let inv = rot.inverse();
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
self.transpose()
}
/// Transposes `self` in-place.
///
/// Same as `.inverse_mut()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// tr_rot.transpose_mut();
///
/// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let mut tr_rot = Rotation2::new(1.2);
/// tr_rot.transpose_mut();
///
/// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transpose_mut(&mut self) {
self.matrix.transpose_mut()
}
/// Inverts `self` in-place.
///
/// Same as `.transpose_mut()` because the inverse of a rotation matrix is its transform.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation2, Rotation3, Vector3};
/// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
/// inv.inverse_mut();
///
/// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
///
/// let rot = Rotation2::new(1.2);
/// let mut inv = Rotation2::new(1.2);
/// inv.inverse_mut();
///
/// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.transpose_mut()
}
}
/// # Transformation of a vector or a point
impl<T: SimdRealField, const D: usize> Rotation<T, D>
where
T::Element: SimdRealField,
{
/// Rotate the given point.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self * pt
}
/// Rotate the given vector.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self * v
}
/// Rotate the given point by the inverse of this rotation. This may be
/// cheaper than inverting the rotation and then transforming the given
/// point.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
Point::from(self.inverse_transform_vector(&pt.coords))
}
/// Rotate the given vector by the inverse of this rotation. This may be
/// cheaper than inverting the rotation and then transforming the given
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self.matrix().tr_mul(v)
}
/// Rotate the given vector by the inverse of this rotation. This may be
/// cheaper than inverting the rotation and then transforming the given
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
/// let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
///
/// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
Unit::new_unchecked(self.inverse_transform_vector(&**v))
}
}
impl<T: Scalar + Eq, const D: usize> Eq for Rotation<T, D> {}
impl<T: Scalar + PartialEq, const D: usize> PartialEq for Rotation<T, D> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
impl<T, const D: usize> AbsDiffEq for Rotation<T, D>
where
T: Scalar + AbsDiffEq,
T::Epsilon: Copy,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.matrix.abs_diff_eq(&other.matrix, epsilon)
}
}
impl<T, const D: usize> RelativeEq for Rotation<T, D>
where
T: Scalar + RelativeEq,
T::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.matrix
.relative_eq(&other.matrix, epsilon, max_relative)
}
}
impl<T, const D: usize> UlpsEq for Rotation<T, D>
where
T: Scalar + UlpsEq,
T::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<T, const D: usize> fmt::Display for Rotation<T, D>
where
T: RealField + fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Rotation matrix {{")?;
write!(f, "{:.*}", precision, self.matrix)?;
writeln!(f, "}}")
}
}
// // /*
// // *
// // * Absolute
// // *
// // */
// // impl<T: Absolute> Absolute for $t<T> {
// // type AbsoluteValue = $submatrix<T::AbsoluteValue>;
// //
// // #[inline]
// // fn abs(m: &$t<T>) -> $submatrix<T::AbsoluteValue> {
// // Absolute::abs(&m.submatrix)
// // }
// // }