1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need to be
//! able to generate instructions (or instruction sequences) to access
//! arguments, stack slots, and spill slots before we know how many spill slots
//! or clobber-saves there will be, because of our pass structure. We also
//! prefer positive offsets to negative offsets because of an asymmetry in
//! some machines' addressing modes (e.g., on AArch64, positive offsets have a
//! larger possible range without a long-form sequence to synthesize an
//! arbitrary offset). Finally, it is not allowed to access memory below the
//! current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and return address
//! above that, if the machine does not do that in hardware). We set FP to point
//! to this two-word frame record. We store all other frame slots below this
//! two-word frame record, with the stack pointer remaining at or below this
//! fixed frame storage for the rest of the function. We can then access frame
//! storage slots using positive offsets from SP. In order to allow codegen for
//! the latter before knowing how many clobber-saves we have, and also allow it
//! while SP is being adjusted to set up a call, we implement a "nominal SP"
//! tracking feature by which a fixup (distance between actual SP and a
//! "nominal" SP) is known at each instruction.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//!   (high address)
//!
//!                              +---------------------------+
//!                              |          ...              |
//!                              | stack args                |
//!                              | (accessed via FP)         |
//!                              +---------------------------+
//! SP at function entry ----->  | return address            |
//!                              +---------------------------+
//! FP after prologue -------->  | FP (pushed by prologue)   |
//!                              +---------------------------+
//!                              |          ...              |
//!                              | spill slots               |
//!                              | (accessed via nominal SP) |
//!                              |          ...              |
//!                              | stack slots               |
//!                              | (accessed via nominal SP) |
//! nominal SP --------------->  | (alloc'd by prologue)     |
//!                              +---------------------------+
//!                              |          ...              |
//!                              | clobbered callee-saves    |
//! SP at end of prologue ---->  | (pushed by prologue)      |
//!                              +---------------------------+
//!                              | [alignment as needed]     |
//!                              |          ...              |
//!                              | args for call             |
//! SP before making a call -->  | (pushed at callsite)      |
//!                              +---------------------------+
//!
//!   (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! Note that we support multi-value returns in two ways. First, we allow for
//! multiple return-value registers. Second, if teh appropriate flag is set, we
//! support the SpiderMonkey Wasm ABI.  For details of the multi-value return
//! ABI, see:
//!
//! https://searchfox.org/mozilla-central/rev/bc3600def806859c31b2c7ac06e3d69271052a89/js/src/wasm/WasmStubs.h#134
//!
//! In brief:
//! - Return values are processed in *reverse* order.
//! - The first return value in this order (so the last return) goes into the
//!   ordinary return register.
//! - Any further returns go in a struct-return area, allocated upwards (in
//!   address order) during the reverse traversal.
//! - This struct-return area is provided by the caller, and a pointer to its
//!   start is passed as an invisible last (extra) argument. Normally the caller
//!   will allocate this area on the stack. When we generate calls, we place it
//!   just above the on-stack argument area.
//! - So, for example, a function returning 4 i64's (v0, v1, v2, v3), with no
//!   formal arguments, would:
//!   - Accept a pointer `P` to the struct return area as a hidden argument in the
//!     first argument register on entry.
//!   - Return v3 in the one and only return-value register.
//!   - Return v2 in memory at `[P]`.
//!   - Return v1 in memory at `[P+8]`.
//!   - Return v0 in memory at `[P+16]`.

use super::abi::*;
use crate::binemit::StackMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, StackSlot};
use crate::machinst::*;
use crate::settings;
use crate::CodegenResult;
use crate::{ir, isa};
use alloc::vec::Vec;
use log::{debug, trace};
use regalloc::{RealReg, Reg, RegClass, Set, SpillSlot, Writable};
use smallvec::{smallvec, SmallVec};
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::mem;

/// A location for an argument or return value.
#[derive(Clone, Copy, Debug)]
pub enum ABIArg {
    /// In a real register (or set of registers).
    Reg(
        ValueRegs<RealReg>,
        ir::Type,
        ir::ArgumentExtension,
        ir::ArgumentPurpose,
    ),
    /// Arguments only: on stack, at given offset from SP at entry.
    Stack(i64, ir::Type, ir::ArgumentExtension, ir::ArgumentPurpose),
}

impl ABIArg {
    /// Get the purpose of this arg.
    fn get_purpose(self) -> ir::ArgumentPurpose {
        match self {
            ABIArg::Reg(_, _, _, purpose) => purpose,
            ABIArg::Stack(_, _, _, purpose) => purpose,
        }
    }
}

/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
    /// Arguments.
    Args,
    /// Return values.
    Rets,
}

/// Is an instruction returned by an ABI machine-specific backend a safepoint,
/// or not?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum InstIsSafepoint {
    /// The instruction is a safepoint.
    Yes,
    /// The instruction is not a safepoint.
    No,
}

/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
    /// Offset from the frame pointer, possibly making use of a specific type
    /// for a scaled indexing operation.
    FPOffset(i64, ir::Type),
    /// Offset from the nominal stack pointer, possibly making use of a specific
    /// type for a scaled indexing operation.
    NominalSPOffset(i64, ir::Type),
    /// Offset from the real stack pointer, possibly making use of a specific
    /// type for a scaled indexing operation.
    SPOffset(i64, ir::Type),
}

impl StackAMode {
    /// Offset by an addend.
    pub fn offset(self, addend: i64) -> Self {
        match self {
            StackAMode::FPOffset(off, ty) => StackAMode::FPOffset(off + addend, ty),
            StackAMode::NominalSPOffset(off, ty) => StackAMode::NominalSPOffset(off + addend, ty),
            StackAMode::SPOffset(off, ty) => StackAMode::SPOffset(off + addend, ty),
        }
    }
}

/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
    /// The instruction type.
    type I: VCodeInst;

    /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
    fn word_bits() -> u32;

    /// Returns the number of bytes in a word.
    fn word_bytes() -> u32 {
        return Self::word_bits() / 8;
    }

    /// Returns word-size integer type.
    fn word_type() -> Type {
        match Self::word_bits() {
            32 => I32,
            64 => I64,
            _ => unreachable!(),
        }
    }

    /// Returns word register class.
    fn word_reg_class() -> RegClass {
        match Self::word_bits() {
            32 => RegClass::I32,
            64 => RegClass::I64,
            _ => unreachable!(),
        }
    }

    /// Returns required stack alignment in bytes.
    fn stack_align(call_conv: isa::CallConv) -> u32;

    /// Process a list of parameters or return values and allocate them to registers
    /// and stack slots.
    ///
    /// Returns the list of argument locations, the stack-space used (rounded up
    /// to as alignment requires), and if `add_ret_area_ptr` was passed, the
    /// index of the extra synthetic arg that was added.
    fn compute_arg_locs(
        call_conv: isa::CallConv,
        params: &[ir::AbiParam],
        args_or_rets: ArgsOrRets,
        add_ret_area_ptr: bool,
    ) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)>;

    /// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
    /// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
    fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;

    /// Generate a load from the stack.
    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;

    /// Generate a store to the stack.
    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;

    /// Generate a move.
    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;

    /// Generate an integer-extend operation.
    fn gen_extend(
        to_reg: Writable<Reg>,
        from_reg: Reg,
        is_signed: bool,
        from_bits: u8,
        to_bits: u8,
    ) -> Self::I;

    /// Generate a return instruction.
    fn gen_ret() -> Self::I;

    /// Generate an "epilogue placeholder" instruction, recognized by lowering
    /// when using the Baldrdash ABI.
    fn gen_epilogue_placeholder() -> Self::I;

    /// Generate an add-with-immediate. Note that even if this uses a scratch
    /// register, it must satisfy two requirements:
    ///
    /// - The add-imm sequence must only clobber caller-save registers, because
    ///   it will be placed in the prologue before the clobbered callee-save
    ///   registers are saved.
    ///
    /// - The add-imm sequence must work correctly when `from_reg` and/or
    ///   `into_reg` are the register returned by `get_stacklimit_reg()`.
    fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I>;

    /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
    /// the stack pointer is less than the given limit register (assuming the
    /// stack grows downward).
    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;

    /// Generate an instruction to compute an address of a stack slot (FP- or
    /// SP-based offset).
    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;

    /// Get a fixed register to use to compute a stack limit. This is needed for
    /// certain sequences generated after the register allocator has already
    /// run. This must satisfy two requirements:
    ///
    /// - It must be a caller-save register, because it will be clobbered in the
    ///   prologue before the clobbered callee-save registers are saved.
    ///
    /// - It must be safe to pass as an argument and/or destination to
    ///   `gen_add_imm()`. This is relevant when an addition with a large
    ///   immediate needs its own temporary; it cannot use the same fixed
    ///   temporary as this one.
    fn get_stacklimit_reg() -> Reg;

    /// Generate a store to the given [base+offset] address.
    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;

    /// Generate a load from the given [base+offset] address.
    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;

    /// Adjust the stack pointer up or down.
    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;

    /// Generate a meta-instruction that adjusts the nominal SP offset.
    fn gen_nominal_sp_adj(amount: i32) -> Self::I;

    /// Generate the usual frame-setup sequence for this architecture: e.g.,
    /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
    /// AArch64.
    fn gen_prologue_frame_setup() -> SmallInstVec<Self::I>;

    /// Generate the usual frame-restore sequence for this architecture.
    fn gen_epilogue_frame_restore() -> SmallInstVec<Self::I>;

    /// Generate a probestack call.
    fn gen_probestack(_frame_size: u32) -> SmallInstVec<Self::I>;

    /// Generate a clobber-save sequence. This takes the list of *all* registers
    /// written/modified by the function body. The implementation here is
    /// responsible for determining which of these are callee-saved according to
    /// the ABI. It should return a sequence of instructions that "push" or
    /// otherwise save these values to the stack. The sequence of instructions
    /// should adjust the stack pointer downward, and should align as necessary
    /// according to ABI requirements.
    ///
    /// Returns stack bytes used as well as instructions. Does not adjust
    /// nominal SP offset; caller will do that.
    fn gen_clobber_save(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        clobbers: &Set<Writable<RealReg>>,
        fixed_frame_storage_size: u32,
        outgoing_args_size: u32,
    ) -> (u64, SmallVec<[Self::I; 16]>);

    /// Generate a clobber-restore sequence. This sequence should perform the
    /// opposite of the clobber-save sequence generated above, assuming that SP
    /// going into the sequence is at the same point that it was left when the
    /// clobber-save sequence finished.
    fn gen_clobber_restore(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        clobbers: &Set<Writable<RealReg>>,
        fixed_frame_storage_size: u32,
        outgoing_args_size: u32,
    ) -> SmallVec<[Self::I; 16]>;

    /// Generate a call instruction/sequence. This method is provided one
    /// temporary register to use to synthesize the called address, if needed.
    fn gen_call(
        dest: &CallDest,
        uses: Vec<Reg>,
        defs: Vec<Writable<Reg>>,
        opcode: ir::Opcode,
        tmp: Writable<Reg>,
        callee_conv: isa::CallConv,
        callee_conv: isa::CallConv,
    ) -> SmallVec<[(InstIsSafepoint, Self::I); 2]>;

    /// Get the number of spillslots required for the given register-class and
    /// type.
    fn get_number_of_spillslots_for_value(rc: RegClass, ty: Type) -> u32;

    /// Get the current virtual-SP offset from an instruction-emission state.
    fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;

    /// Get the "nominal SP to FP" offset from an instruction-emission state.
    fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;

    /// Get all caller-save registers, that is, registers that we expect
    /// not to be saved across a call to a callee with the given ABI.
    fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> Vec<Writable<Reg>>;

    /// Get the needed extension mode, given the mode attached to the argument
    /// in the signature and the calling convention. The input (the attribute in
    /// the signature) specifies what extension type should be done *if* the ABI
    /// requires extension to the full register; this method's return value
    /// indicates whether the extension actually *will* be done.
    fn get_ext_mode(
        call_conv: isa::CallConv,
        specified: ir::ArgumentExtension,
    ) -> ir::ArgumentExtension;
}

/// ABI information shared between body (callee) and caller.
struct ABISig {
    /// Argument locations (regs or stack slots). Stack offsets are relative to
    /// SP on entry to function.
    args: Vec<ABIArg>,
    /// Return-value locations. Stack offsets are relative to the return-area
    /// pointer.
    rets: Vec<ABIArg>,
    /// Space on stack used to store arguments.
    stack_arg_space: i64,
    /// Space on stack used to store return values.
    stack_ret_space: i64,
    /// Index in `args` of the stack-return-value-area argument.
    stack_ret_arg: Option<usize>,
    /// Calling convention used.
    call_conv: isa::CallConv,
}

impl ABISig {
    fn from_func_sig<M: ABIMachineSpec>(sig: &ir::Signature) -> CodegenResult<ABISig> {
        // Compute args and retvals from signature. Handle retvals first,
        // because we may need to add a return-area arg to the args.
        let (rets, stack_ret_space, _) = M::compute_arg_locs(
            sig.call_conv,
            &sig.returns,
            ArgsOrRets::Rets,
            /* extra ret-area ptr = */ false,
        )?;
        let need_stack_return_area = stack_ret_space > 0;
        let (args, stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
            sig.call_conv,
            &sig.params,
            ArgsOrRets::Args,
            need_stack_return_area,
        )?;

        trace!(
            "ABISig: sig {:?} => args = {:?} rets = {:?} arg stack = {} ret stack = {} stack_ret_arg = {:?}",
            sig,
            args,
            rets,
            stack_arg_space,
            stack_ret_space,
            stack_ret_arg
        );

        Ok(ABISig {
            args,
            rets,
            stack_arg_space,
            stack_ret_space,
            stack_ret_arg,
            call_conv: sig.call_conv,
        })
    }
}

/// ABI object for a function body.
pub struct ABICalleeImpl<M: ABIMachineSpec> {
    /// Signature: arg and retval regs.
    sig: ABISig,
    /// Offsets to each stackslot.
    stackslots: Vec<u32>,
    /// Total stack size of all stackslots.
    stackslots_size: u32,
    /// Stack size to be reserved for outgoing arguments.
    outgoing_args_size: u32,
    /// Clobbered registers, from regalloc.
    clobbered: Set<Writable<RealReg>>,
    /// Total number of spillslots, from regalloc.
    spillslots: Option<usize>,
    /// Storage allocated for the fixed part of the stack frame.  This is
    /// usually the same as the total frame size below, except in the case
    /// of the baldrdash calling convention.
    fixed_frame_storage_size: u32,
    /// "Total frame size", as defined by "distance between FP and nominal SP".
    /// Some items are pushed below nominal SP, so the function may actually use
    /// more stack than this would otherwise imply. It is simply the initial
    /// frame/allocation size needed for stackslots and spillslots.
    total_frame_size: Option<u32>,
    /// The register holding the return-area pointer, if needed.
    ret_area_ptr: Option<Writable<Reg>>,
    /// Calling convention this function expects.
    call_conv: isa::CallConv,
    /// The settings controlling this function's compilation.
    flags: settings::Flags,
    /// Whether or not this function is a "leaf", meaning it calls no other
    /// functions
    is_leaf: bool,
    /// If this function has a stack limit specified, then `Reg` is where the
    /// stack limit will be located after the instructions specified have been
    /// executed.
    ///
    /// Note that this is intended for insertion into the prologue, if
    /// present. Also note that because the instructions here execute in the
    /// prologue this happens after legalization/register allocation/etc so we
    /// need to be extremely careful with each instruction. The instructions are
    /// manually register-allocated and carefully only use caller-saved
    /// registers and keep nothing live after this sequence of instructions.
    stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
    /// Are we to invoke the probestack function in the prologue? If so,
    /// what is the minimum size at which we must invoke it?
    probestack_min_frame: Option<u32>,

    _mach: PhantomData<M>,
}

fn get_special_purpose_param_register(
    f: &ir::Function,
    abi: &ABISig,
    purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
    let idx = f.signature.special_param_index(purpose)?;
    match abi.args[idx] {
        ABIArg::Reg(regs, ..) => Some(regs.only_reg().unwrap().to_reg()),
        ABIArg::Stack(..) => None,
    }
}

impl<M: ABIMachineSpec> ABICalleeImpl<M> {
    /// Create a new body ABI instance.
    pub fn new(f: &ir::Function, flags: settings::Flags) -> CodegenResult<Self> {
        debug!("ABI: func signature {:?}", f.signature);

        let sig = ABISig::from_func_sig::<M>(&f.signature)?;

        let call_conv = f.signature.call_conv;
        // Only these calling conventions are supported.
        debug_assert!(
            call_conv == isa::CallConv::SystemV
                || call_conv == isa::CallConv::Fast
                || call_conv == isa::CallConv::Cold
                || call_conv.extends_baldrdash(),
            "Unsupported calling convention: {:?}",
            call_conv
        );

        // Compute stackslot locations and total stackslot size.
        let mut stack_offset: u32 = 0;
        let mut stackslots = vec![];
        for (stackslot, data) in f.stack_slots.iter() {
            let off = stack_offset;
            stack_offset += data.size;
            let mask = M::word_bytes() - 1;
            stack_offset = (stack_offset + mask) & !mask;
            debug_assert_eq!(stackslot.as_u32() as usize, stackslots.len());
            stackslots.push(off);
        }

        // Figure out what instructions, if any, will be needed to check the
        // stack limit. This can either be specified as a special-purpose
        // argument or as a global value which often calculates the stack limit
        // from the arguments.
        let stack_limit =
            get_special_purpose_param_register(f, &sig, ir::ArgumentPurpose::StackLimit)
                .map(|reg| (reg, smallvec![]))
                .or_else(|| f.stack_limit.map(|gv| gen_stack_limit::<M>(f, &sig, gv)));

        // Determine whether a probestack call is required for large enough
        // frames (and the minimum frame size if so).
        let probestack_min_frame = if flags.enable_probestack() {
            assert!(
                !flags.probestack_func_adjusts_sp(),
                "SP-adjusting probestack not supported in new backends"
            );
            Some(1 << flags.probestack_size_log2())
        } else {
            None
        };

        Ok(Self {
            sig,
            stackslots,
            stackslots_size: stack_offset,
            outgoing_args_size: 0,
            clobbered: Set::empty(),
            spillslots: None,
            fixed_frame_storage_size: 0,
            total_frame_size: None,
            ret_area_ptr: None,
            call_conv,
            flags,
            is_leaf: f.is_leaf(),
            stack_limit,
            probestack_min_frame,
            _mach: PhantomData,
        })
    }

    /// Inserts instructions necessary for checking the stack limit into the
    /// prologue.
    ///
    /// This function will generate instructions necessary for perform a stack
    /// check at the header of a function. The stack check is intended to trap
    /// if the stack pointer goes below a particular threshold, preventing stack
    /// overflow in wasm or other code. The `stack_limit` argument here is the
    /// register which holds the threshold below which we're supposed to trap.
    /// This function is known to allocate `stack_size` bytes and we'll push
    /// instructions onto `insts`.
    ///
    /// Note that the instructions generated here are special because this is
    /// happening so late in the pipeline (e.g. after register allocation). This
    /// means that we need to do manual register allocation here and also be
    /// careful to not clobber any callee-saved or argument registers. For now
    /// this routine makes do with the `spilltmp_reg` as one temporary
    /// register, and a second register of `tmp2` which is caller-saved. This
    /// should be fine for us since no spills should happen in this sequence of
    /// instructions, so our register won't get accidentally clobbered.
    ///
    /// No values can be live after the prologue, but in this case that's ok
    /// because we just need to perform a stack check before progressing with
    /// the rest of the function.
    fn insert_stack_check(
        &self,
        stack_limit: Reg,
        stack_size: u32,
        insts: &mut SmallInstVec<M::I>,
    ) {
        // With no explicit stack allocated we can just emit the simple check of
        // the stack registers against the stack limit register, and trap if
        // it's out of bounds.
        if stack_size == 0 {
            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
            return;
        }

        // Note that the 32k stack size here is pretty special. See the
        // documentation in x86/abi.rs for why this is here. The general idea is
        // that we're protecting against overflow in the addition that happens
        // below.
        if stack_size >= 32 * 1024 {
            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
        }

        // Add the `stack_size` to `stack_limit`, placing the result in
        // `scratch`.
        //
        // Note though that `stack_limit`'s register may be the same as
        // `scratch`. If our stack size doesn't fit into an immediate this
        // means we need a second scratch register for loading the stack size
        // into a register.
        let scratch = Writable::from_reg(M::get_stacklimit_reg());
        insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
        insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
    }
}

/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
    f: &ir::Function,
    abi: &ABISig,
    gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
    let mut insts = smallvec![];
    let reg = generate_gv::<M>(f, abi, gv, &mut insts);
    return (reg, insts);
}

fn generate_gv<M: ABIMachineSpec>(
    f: &ir::Function,
    abi: &ABISig,
    gv: ir::GlobalValue,
    insts: &mut SmallInstVec<M::I>,
) -> Reg {
    match f.global_values[gv] {
        // Return the direct register the vmcontext is in
        ir::GlobalValueData::VMContext => {
            get_special_purpose_param_register(f, abi, ir::ArgumentPurpose::VMContext)
                .expect("no vmcontext parameter found")
        }
        // Load our base value into a register, then load from that register
        // in to a temporary register.
        ir::GlobalValueData::Load {
            base,
            offset,
            global_type: _,
            readonly: _,
        } => {
            let base = generate_gv::<M>(f, abi, base, insts);
            let into_reg = Writable::from_reg(M::get_stacklimit_reg());
            insts.push(M::gen_load_base_offset(
                into_reg,
                base,
                offset.into(),
                M::word_type(),
            ));
            return into_reg.to_reg();
        }
        ref other => panic!("global value for stack limit not supported: {}", other),
    }
}

/// Return a type either from an optional type hint, or if not, from the default
/// type associated with the given register's class. This is used to generate
/// loads/spills appropriately given the type of value loaded/stored (which may
/// be narrower than the spillslot). We usually have the type because the
/// regalloc usually provides the vreg being spilled/reloaded, and we know every
/// vreg's type. However, the regalloc *can* request a spill/reload without an
/// associated vreg when needed to satisfy a safepoint (which requires all
/// ref-typed values, even those in real registers in the original vcode, to be
/// in spillslots).
fn ty_from_ty_hint_or_reg_class<M: ABIMachineSpec>(r: Reg, ty: Option<Type>) -> Type {
    match (ty, r.get_class()) {
        // If the type is provided
        (Some(t), _) => t,
        // If no type is provided, this should be a register spill for a
        // safepoint, so we only expect I32/I64 (integer) registers.
        (None, rc) if rc == M::word_reg_class() => M::word_type(),
        _ => panic!("Unexpected register class!"),
    }
}

fn gen_move_multi<M: ABIMachineSpec>(
    dst: ValueRegs<Writable<Reg>>,
    src: ValueRegs<Reg>,
    ty: Type,
) -> SmallInstVec<M::I> {
    let mut ret = smallvec![];
    let (_, tys) = M::I::rc_for_type(ty).unwrap();
    for ((&dst, &src), &ty) in dst.regs().iter().zip(src.regs().iter()).zip(tys.iter()) {
        ret.push(M::gen_move(dst, src, ty));
    }
    ret
}

fn gen_load_stack_multi<M: ABIMachineSpec>(
    from: StackAMode,
    dst: ValueRegs<Writable<Reg>>,
    ty: Type,
) -> SmallInstVec<M::I> {
    let mut ret = smallvec![];
    let (_, tys) = M::I::rc_for_type(ty).unwrap();
    let mut offset = 0;
    // N.B.: registers are given in the `ValueRegs` in target endian order.
    for (&dst, &ty) in dst.regs().iter().zip(tys.iter()) {
        ret.push(M::gen_load_stack(from.offset(offset), dst, ty));
        offset += ty.bytes() as i64;
    }
    ret
}

fn gen_store_stack_multi<M: ABIMachineSpec>(
    from: StackAMode,
    src: ValueRegs<Reg>,
    ty: Type,
) -> SmallInstVec<M::I> {
    let mut ret = smallvec![];
    let (_, tys) = M::I::rc_for_type(ty).unwrap();
    let mut offset = 0;
    // N.B.: registers are given in the `ValueRegs` in target endian order.
    for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
        ret.push(M::gen_store_stack(from.offset(offset), src, ty));
        offset += ty.bytes() as i64;
    }
    ret
}

fn gen_store_base_offset_multi<M: ABIMachineSpec>(
    base: Reg,
    mut offset: i32,
    src: ValueRegs<Reg>,
    ty: Type,
) -> SmallInstVec<M::I> {
    let mut ret = smallvec![];
    let (_, tys) = M::I::rc_for_type(ty).unwrap();
    // N.B.: registers are given in the `ValueRegs` in target endian order.
    for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
        ret.push(M::gen_store_base_offset(base, offset, src, ty));
        offset += ty.bytes() as i32;
    }
    ret
}

impl<M: ABIMachineSpec> ABICallee for ABICalleeImpl<M> {
    type I = M::I;

    fn temp_needed(&self) -> Option<Type> {
        if self.sig.stack_ret_arg.is_some() {
            Some(M::word_type())
        } else {
            None
        }
    }

    fn init(&mut self, maybe_tmp: Option<Writable<Reg>>) {
        if self.sig.stack_ret_arg.is_some() {
            assert!(maybe_tmp.is_some());
            self.ret_area_ptr = maybe_tmp;
        }
    }

    fn accumulate_outgoing_args_size(&mut self, size: u32) {
        if size > self.outgoing_args_size {
            self.outgoing_args_size = size;
        }
    }

    fn flags(&self) -> &settings::Flags {
        &self.flags
    }

    fn call_conv(&self) -> isa::CallConv {
        self.sig.call_conv
    }

    fn liveins(&self) -> Set<RealReg> {
        let mut set: Set<RealReg> = Set::empty();
        for &arg in &self.sig.args {
            if let ABIArg::Reg(regs, ..) = arg {
                for &r in regs.regs() {
                    set.insert(r);
                }
            }
        }
        set
    }

    fn liveouts(&self) -> Set<RealReg> {
        let mut set: Set<RealReg> = Set::empty();
        for &ret in &self.sig.rets {
            if let ABIArg::Reg(regs, ..) = ret {
                for &r in regs.regs() {
                    set.insert(r);
                }
            }
        }
        set
    }

    fn num_args(&self) -> usize {
        self.sig.args.len()
    }

    fn num_retvals(&self) -> usize {
        self.sig.rets.len()
    }

    fn num_stackslots(&self) -> usize {
        self.stackslots.len()
    }

    fn gen_copy_arg_to_regs(
        &self,
        idx: usize,
        into_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<Self::I> {
        match &self.sig.args[idx] {
            // Extension mode doesn't matter (we're copying out, not in; we
            // ignore high bits by convention).
            &ABIArg::Reg(regs, ty, ..) => {
                gen_move_multi::<M>(into_regs, regs.map(|r| r.to_reg()), ty)
            }
            &ABIArg::Stack(off, ty, ..) => gen_load_stack_multi::<M>(
                StackAMode::FPOffset(M::fp_to_arg_offset(self.call_conv, &self.flags) + off, ty),
                into_regs,
                ty,
            ),
        }
    }

    fn arg_is_needed_in_body(&self, idx: usize) -> bool {
        match self.sig.args[idx].get_purpose() {
            // Special Baldrdash-specific pseudo-args that are present only to
            // fill stack slots.  Won't ever be used as ordinary values in the
            // body.
            ir::ArgumentPurpose::CalleeTLS | ir::ArgumentPurpose::CallerTLS => false,
            _ => true,
        }
    }

    fn gen_copy_regs_to_retval(
        &self,
        idx: usize,
        from_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<Self::I> {
        let mut ret = smallvec![];
        let word_bits = M::word_bits() as u8;
        match &self.sig.rets[idx] {
            &ABIArg::Reg(regs, ty, ext, ..) => {
                let from_bits = ty_bits(ty) as u8;
                let dest_regs = writable_value_regs(regs.map(|r| r.to_reg()));
                let ext = M::get_ext_mode(self.sig.call_conv, ext);
                match (ext, from_bits) {
                    (ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
                        if n < word_bits =>
                    {
                        let signed = ext == ArgumentExtension::Sext;
                        let dest_reg = dest_regs
                            .only_reg()
                            .expect("extension only possible from one-reg value");
                        let from_reg = from_regs
                            .only_reg()
                            .expect("extension only possible from one-reg value");
                        ret.push(M::gen_extend(
                            dest_reg,
                            from_reg.to_reg(),
                            signed,
                            from_bits,
                            /* to_bits = */ word_bits,
                        ));
                    }
                    _ => ret.extend(
                        gen_move_multi::<M>(dest_regs, non_writable_value_regs(from_regs), ty)
                            .into_iter(),
                    ),
                };
            }
            &ABIArg::Stack(off, mut ty, ext, ..) => {
                let from_bits = ty_bits(ty) as u8;
                // A machine ABI implementation should ensure that stack frames
                // have "reasonable" size. All current ABIs for machinst
                // backends (aarch64 and x64) enforce a 128MB limit.
                let off = i32::try_from(off)
                    .expect("Argument stack offset greater than 2GB; should hit impl limit first");
                let ext = M::get_ext_mode(self.sig.call_conv, ext);
                // Trash the from_reg; it should be its last use.
                match (ext, from_bits) {
                    (ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
                        if n < word_bits =>
                    {
                        let from_reg = from_regs
                            .only_reg()
                            .expect("extension only possible from one-reg value");
                        assert_eq!(M::word_reg_class(), from_reg.to_reg().get_class());
                        let signed = ext == ArgumentExtension::Sext;
                        ret.push(M::gen_extend(
                            from_reg,
                            from_reg.to_reg(),
                            signed,
                            from_bits,
                            /* to_bits = */ word_bits,
                        ));
                        // Store the extended version.
                        ty = M::word_type();
                    }
                    _ => {}
                };
                ret.extend(
                    gen_store_base_offset_multi::<M>(
                        self.ret_area_ptr.unwrap().to_reg(),
                        off,
                        non_writable_value_regs(from_regs),
                        ty,
                    )
                    .into_iter(),
                );
            }
        }
        ret
    }

    fn gen_retval_area_setup(&self) -> Option<Self::I> {
        if let Some(i) = self.sig.stack_ret_arg {
            let insts = self.gen_copy_arg_to_regs(i, ValueRegs::one(self.ret_area_ptr.unwrap()));
            let inst = insts.into_iter().next().unwrap();
            trace!(
                "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
                inst,
                self.ret_area_ptr.unwrap().to_reg()
            );
            Some(inst)
        } else {
            trace!("gen_retval_area_setup: not needed");
            None
        }
    }

    fn gen_ret(&self) -> Self::I {
        M::gen_ret()
    }

    fn gen_epilogue_placeholder(&self) -> Self::I {
        M::gen_epilogue_placeholder()
    }

    fn set_num_spillslots(&mut self, slots: usize) {
        self.spillslots = Some(slots);
    }

    fn set_clobbered(&mut self, clobbered: Set<Writable<RealReg>>) {
        self.clobbered = clobbered;
    }

    /// Load from a stackslot.
    fn load_stackslot(
        &self,
        slot: StackSlot,
        offset: u32,
        ty: Type,
        into_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<Self::I> {
        // Offset from beginning of stackslot area, which is at nominal SP (see
        // [MemArg::NominalSPOffset] for more details on nominal SP tracking).
        let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
        let sp_off: i64 = stack_off + (offset as i64);
        trace!("load_stackslot: slot {} -> sp_off {}", slot, sp_off);
        gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
    }

    /// Store to a stackslot.
    fn store_stackslot(
        &self,
        slot: StackSlot,
        offset: u32,
        ty: Type,
        from_regs: ValueRegs<Reg>,
    ) -> SmallInstVec<Self::I> {
        // Offset from beginning of stackslot area, which is at nominal SP (see
        // [MemArg::NominalSPOffset] for more details on nominal SP tracking).
        let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
        let sp_off: i64 = stack_off + (offset as i64);
        trace!("store_stackslot: slot {} -> sp_off {}", slot, sp_off);
        gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
    }

    /// Produce an instruction that computes a stackslot address.
    fn stackslot_addr(&self, slot: StackSlot, offset: u32, into_reg: Writable<Reg>) -> Self::I {
        // Offset from beginning of stackslot area, which is at nominal SP (see
        // [MemArg::NominalSPOffset] for more details on nominal SP tracking).
        let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
        let sp_off: i64 = stack_off + (offset as i64);
        M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
    }

    /// Load from a spillslot.
    fn load_spillslot(
        &self,
        slot: SpillSlot,
        ty: Type,
        into_regs: ValueRegs<Writable<Reg>>,
    ) -> SmallInstVec<Self::I> {
        // Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
        let islot = slot.get() as i64;
        let spill_off = islot * M::word_bytes() as i64;
        let sp_off = self.stackslots_size as i64 + spill_off;
        trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
        gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
    }

    /// Store to a spillslot.
    fn store_spillslot(
        &self,
        slot: SpillSlot,
        ty: Type,
        from_regs: ValueRegs<Reg>,
    ) -> SmallInstVec<Self::I> {
        // Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
        let islot = slot.get() as i64;
        let spill_off = islot * M::word_bytes() as i64;
        let sp_off = self.stackslots_size as i64 + spill_off;
        trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
        gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
    }

    fn spillslots_to_stack_map(
        &self,
        slots: &[SpillSlot],
        state: &<Self::I as MachInstEmit>::State,
    ) -> StackMap {
        let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
        let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
        assert!(virtual_sp_offset >= 0);
        trace!(
            "spillslots_to_stackmap: slots = {:?}, state = {:?}",
            slots,
            state
        );
        let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
        let bytes = M::word_bytes();
        let map_words = (map_size + bytes - 1) / bytes;
        let mut bits = std::iter::repeat(false)
            .take(map_words as usize)
            .collect::<Vec<bool>>();

        let first_spillslot_word =
            ((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
        for &slot in slots {
            let slot = slot.get() as usize;
            bits[first_spillslot_word + slot] = true;
        }

        StackMap::from_slice(&bits[..])
    }

    fn gen_prologue(&mut self) -> SmallInstVec<Self::I> {
        let mut insts = smallvec![];
        if !self.call_conv.extends_baldrdash() {
            // set up frame
            insts.extend(M::gen_prologue_frame_setup().into_iter());
        }

        let bytes = M::word_bytes();
        let mut total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
        if self.call_conv.extends_baldrdash() {
            debug_assert!(
                !self.flags.enable_probestack(),
                "baldrdash does not expect cranelift to emit stack probes"
            );
            total_stacksize += self.flags.baldrdash_prologue_words() as u32 * bytes;
        }
        let mask = M::stack_align(self.call_conv) - 1;
        let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.

        if !self.call_conv.extends_baldrdash() {
            // Leaf functions with zero stack don't need a stack check if one's
            // specified, otherwise always insert the stack check.
            if total_stacksize > 0 || !self.is_leaf {
                if let Some((reg, stack_limit_load)) = &self.stack_limit {
                    insts.extend(stack_limit_load.clone());
                    self.insert_stack_check(*reg, total_stacksize, &mut insts);
                }
                if let Some(min_frame) = &self.probestack_min_frame {
                    if total_stacksize >= *min_frame {
                        insts.extend(M::gen_probestack(total_stacksize));
                    }
                }
            }
            if total_stacksize > 0 {
                self.fixed_frame_storage_size += total_stacksize;
            }
        }

        // N.B.: "nominal SP", which we use to refer to stackslots and
        // spillslots, is defined to be equal to the stack pointer at this point
        // in the prologue.
        //
        // If we push any clobbers below, we emit a virtual-SP adjustment
        // meta-instruction so that the nominal SP references behave as if SP
        // were still at this point. See documentation for
        // [crate::machinst::abi_impl](this module) for more details on
        // stackframe layout and nominal SP maintenance.

        // Save clobbered registers.
        let (clobber_size, clobber_insts) = M::gen_clobber_save(
            self.call_conv,
            &self.flags,
            &self.clobbered,
            self.fixed_frame_storage_size,
            self.outgoing_args_size,
        );
        insts.extend(clobber_insts);

        let sp_adj = self.outgoing_args_size as i32 + clobber_size as i32;
        if sp_adj > 0 {
            insts.push(M::gen_nominal_sp_adj(sp_adj));
        }

        self.total_frame_size = Some(total_stacksize);
        insts
    }

    fn gen_epilogue(&self) -> SmallInstVec<M::I> {
        let mut insts = smallvec![];

        // Restore clobbered registers.
        insts.extend(M::gen_clobber_restore(
            self.call_conv,
            &self.flags,
            &self.clobbered,
            self.fixed_frame_storage_size,
            self.outgoing_args_size,
        ));

        // N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
        // references to nominal SP offsets before the return below, and (ii) the instruction
        // emission tracks running SP offset linearly (in straight-line order), not according to
        // the CFG, so early returns in the middle of function bodies would cause an incorrect
        // offset for the rest of the body.

        if !self.call_conv.extends_baldrdash() {
            insts.extend(M::gen_epilogue_frame_restore());
            insts.push(M::gen_ret());
        }

        debug!("Epilogue: {:?}", insts);
        insts
    }

    fn frame_size(&self) -> u32 {
        self.total_frame_size
            .expect("frame size not computed before prologue generation")
    }

    fn stack_args_size(&self) -> u32 {
        self.sig.stack_arg_space as u32
    }

    fn get_spillslot_size(&self, rc: RegClass, ty: Type) -> u32 {
        M::get_number_of_spillslots_for_value(rc, ty)
    }

    fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, ty: Option<Type>) -> Self::I {
        let ty = ty_from_ty_hint_or_reg_class::<M>(from_reg.to_reg(), ty);
        self.store_spillslot(to_slot, ty, ValueRegs::one(from_reg.to_reg()))
            .into_iter()
            .next()
            .unwrap()
    }

    fn gen_reload(
        &self,
        to_reg: Writable<RealReg>,
        from_slot: SpillSlot,
        ty: Option<Type>,
    ) -> Self::I {
        let ty = ty_from_ty_hint_or_reg_class::<M>(to_reg.to_reg().to_reg(), ty);
        self.load_spillslot(
            from_slot,
            ty,
            writable_value_regs(ValueRegs::one(to_reg.to_reg().to_reg())),
        )
        .into_iter()
        .next()
        .unwrap()
    }

    fn unwind_info_kind(&self) -> UnwindInfoKind {
        match self.sig.call_conv {
            #[cfg(feature = "unwind")]
            isa::CallConv::Fast | isa::CallConv::Cold | isa::CallConv::SystemV => {
                UnwindInfoKind::SystemV
            }
            #[cfg(feature = "unwind")]
            isa::CallConv::WindowsFastcall => UnwindInfoKind::Windows,
            _ => UnwindInfoKind::None,
        }
    }
}

fn abisig_to_uses_and_defs<M: ABIMachineSpec>(sig: &ABISig) -> (Vec<Reg>, Vec<Writable<Reg>>) {
    // Compute uses: all arg regs.
    let mut uses = Vec::new();
    for arg in &sig.args {
        match arg {
            &ABIArg::Reg(regs, ..) => uses.extend(regs.regs().iter().map(|r| r.to_reg())),
            _ => {}
        }
    }

    // Compute defs: all retval regs, and all caller-save (clobbered) regs.
    let mut defs = M::get_regs_clobbered_by_call(sig.call_conv);
    for ret in &sig.rets {
        match ret {
            &ABIArg::Reg(regs, ..) => {
                defs.extend(regs.regs().iter().map(|r| Writable::from_reg(r.to_reg())))
            }
            _ => {}
        }
    }

    (uses, defs)
}

/// ABI object for a callsite.
pub struct ABICallerImpl<M: ABIMachineSpec> {
    /// The called function's signature.
    sig: ABISig,
    /// All uses for the callsite, i.e., function args.
    uses: Vec<Reg>,
    /// All defs for the callsite, i.e., return values and caller-saves.
    defs: Vec<Writable<Reg>>,
    /// Call destination.
    dest: CallDest,
    /// Actual call opcode; used to distinguish various types of calls.
    opcode: ir::Opcode,
    /// Caller's calling convention.
    caller_conv: isa::CallConv,

    _mach: PhantomData<M>,
}

/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
    /// Call to an ExtName (named function symbol).
    ExtName(ir::ExternalName, RelocDistance),
    /// Indirect call to a function pointer in a register.
    Reg(Reg),
}

impl<M: ABIMachineSpec> ABICallerImpl<M> {
    /// Create a callsite ABI object for a call directly to the specified function.
    pub fn from_func(
        sig: &ir::Signature,
        extname: &ir::ExternalName,
        dist: RelocDistance,
        caller_conv: isa::CallConv,
    ) -> CodegenResult<ABICallerImpl<M>> {
        let sig = ABISig::from_func_sig::<M>(sig)?;
        let (uses, defs) = abisig_to_uses_and_defs::<M>(&sig);
        Ok(ABICallerImpl {
            sig,
            uses,
            defs,
            dest: CallDest::ExtName(extname.clone(), dist),
            opcode: ir::Opcode::Call,
            caller_conv,
            _mach: PhantomData,
        })
    }

    /// Create a callsite ABI object for a call to a function pointer with the
    /// given signature.
    pub fn from_ptr(
        sig: &ir::Signature,
        ptr: Reg,
        opcode: ir::Opcode,
        caller_conv: isa::CallConv,
    ) -> CodegenResult<ABICallerImpl<M>> {
        let sig = ABISig::from_func_sig::<M>(sig)?;
        let (uses, defs) = abisig_to_uses_and_defs::<M>(&sig);
        Ok(ABICallerImpl {
            sig,
            uses,
            defs,
            dest: CallDest::Reg(ptr),
            opcode,
            caller_conv,
            _mach: PhantomData,
        })
    }
}

fn adjust_stack_and_nominal_sp<M: ABIMachineSpec, C: LowerCtx<I = M::I>>(
    ctx: &mut C,
    off: i32,
    is_sub: bool,
) {
    if off == 0 {
        return;
    }
    let amt = if is_sub { -off } else { off };
    for inst in M::gen_sp_reg_adjust(amt) {
        ctx.emit(inst);
    }
    ctx.emit(M::gen_nominal_sp_adj(-amt));
}

impl<M: ABIMachineSpec> ABICaller for ABICallerImpl<M> {
    type I = M::I;

    fn num_args(&self) -> usize {
        if self.sig.stack_ret_arg.is_some() {
            self.sig.args.len() - 1
        } else {
            self.sig.args.len()
        }
    }

    fn accumulate_outgoing_args_size<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
        let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
        ctx.abi().accumulate_outgoing_args_size(off as u32);
    }

    fn emit_stack_pre_adjust<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
        let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
        adjust_stack_and_nominal_sp::<M, C>(ctx, off as i32, /* is_sub = */ true)
    }

    fn emit_stack_post_adjust<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
        let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
        adjust_stack_and_nominal_sp::<M, C>(ctx, off as i32, /* is_sub = */ false)
    }

    fn emit_copy_regs_to_arg<C: LowerCtx<I = Self::I>>(
        &self,
        ctx: &mut C,
        idx: usize,
        from_regs: ValueRegs<Reg>,
    ) {
        let word_rc = M::word_reg_class();
        let word_bits = M::word_bits() as usize;
        match &self.sig.args[idx] {
            &ABIArg::Reg(regs, ty, ext, _) => {
                let ext = M::get_ext_mode(self.sig.call_conv, ext);
                if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
                    let reg = regs.only_reg().unwrap();
                    assert_eq!(word_rc, reg.get_class());
                    let signed = match ext {
                        ir::ArgumentExtension::Uext => false,
                        ir::ArgumentExtension::Sext => true,
                        _ => unreachable!(),
                    };
                    ctx.emit(M::gen_extend(
                        Writable::from_reg(reg.to_reg()),
                        from_regs.only_reg().unwrap(),
                        signed,
                        ty_bits(ty) as u8,
                        word_bits as u8,
                    ));
                } else {
                    for insn in gen_move_multi::<M>(
                        writable_value_regs(regs.map(|r| r.to_reg())),
                        from_regs,
                        ty,
                    ) {
                        ctx.emit(insn);
                    }
                }
            }
            &ABIArg::Stack(off, mut ty, ext, _) => {
                let ext = M::get_ext_mode(self.sig.call_conv, ext);
                if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
                    let from_reg = from_regs
                        .only_reg()
                        .expect("only one reg for sub-word value width");
                    assert_eq!(word_rc, from_reg.get_class());
                    let signed = match ext {
                        ir::ArgumentExtension::Uext => false,
                        ir::ArgumentExtension::Sext => true,
                        _ => unreachable!(),
                    };
                    // Extend in place in the source register. Our convention is to
                    // treat high bits as undefined for values in registers, so this
                    // is safe, even for an argument that is nominally read-only.
                    ctx.emit(M::gen_extend(
                        Writable::from_reg(from_reg),
                        from_reg,
                        signed,
                        ty_bits(ty) as u8,
                        word_bits as u8,
                    ));
                    // Store the extended version.
                    ty = M::word_type();
                }
                for insn in gen_store_stack_multi::<M>(StackAMode::SPOffset(off, ty), from_regs, ty)
                {
                    ctx.emit(insn);
                }
            }
        }
    }

    fn emit_copy_retval_to_regs<C: LowerCtx<I = Self::I>>(
        &self,
        ctx: &mut C,
        idx: usize,
        into_regs: ValueRegs<Writable<Reg>>,
    ) {
        match &self.sig.rets[idx] {
            // Extension mode doesn't matter because we're copying out, not in,
            // and we ignore high bits in our own registers by convention.
            &ABIArg::Reg(regs, ty, _, _) => {
                for insn in gen_move_multi::<M>(into_regs, regs.map(|r| r.to_reg()), ty) {
                    ctx.emit(insn);
                }
            }
            &ABIArg::Stack(off, ty, _, _) => {
                let ret_area_base = self.sig.stack_arg_space;
                for insn in gen_load_stack_multi::<M>(
                    StackAMode::SPOffset(off + ret_area_base, ty),
                    into_regs,
                    ty,
                ) {
                    ctx.emit(insn);
                }
            }
        }
    }

    fn emit_call<C: LowerCtx<I = Self::I>>(&mut self, ctx: &mut C) {
        let (uses, defs) = (
            mem::replace(&mut self.uses, Default::default()),
            mem::replace(&mut self.defs, Default::default()),
        );
        let word_type = M::word_type();
        if let Some(i) = self.sig.stack_ret_arg {
            let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
            let ret_area_base = self.sig.stack_arg_space;
            ctx.emit(M::gen_get_stack_addr(
                StackAMode::SPOffset(ret_area_base, I8),
                rd,
                I8,
            ));
            self.emit_copy_regs_to_arg(ctx, i, ValueRegs::one(rd.to_reg()));
        }
        let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
        for (is_safepoint, inst) in M::gen_call(
            &self.dest,
            uses,
            defs,
            self.opcode,
            tmp,
            self.sig.call_conv,
            self.caller_conv,
        )
        .into_iter()
        {
            match is_safepoint {
                InstIsSafepoint::Yes => ctx.emit_safepoint(inst),
                InstIsSafepoint::No => ctx.emit(inst),
            }
        }
    }
}