1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need to be
//! able to generate instructions (or instruction sequences) to access
//! arguments, stack slots, and spill slots before we know how many spill slots
//! or clobber-saves there will be, because of our pass structure. We also
//! prefer positive offsets to negative offsets because of an asymmetry in
//! some machines' addressing modes (e.g., on AArch64, positive offsets have a
//! larger possible range without a long-form sequence to synthesize an
//! arbitrary offset). Finally, it is not allowed to access memory below the
//! current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and return address
//! above that, if the machine does not do that in hardware). We set FP to point
//! to this two-word frame record. We store all other frame slots below this
//! two-word frame record, with the stack pointer remaining at or below this
//! fixed frame storage for the rest of the function. We can then access frame
//! storage slots using positive offsets from SP. In order to allow codegen for
//! the latter before knowing how many clobber-saves we have, and also allow it
//! while SP is being adjusted to set up a call, we implement a "nominal SP"
//! tracking feature by which a fixup (distance between actual SP and a
//! "nominal" SP) is known at each instruction.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//! (high address)
//!
//! +---------------------------+
//! | ... |
//! | stack args |
//! | (accessed via FP) |
//! +---------------------------+
//! SP at function entry -----> | return address |
//! +---------------------------+
//! FP after prologue --------> | FP (pushed by prologue) |
//! +---------------------------+
//! | ... |
//! | spill slots |
//! | (accessed via nominal SP) |
//! | ... |
//! | stack slots |
//! | (accessed via nominal SP) |
//! nominal SP ---------------> | (alloc'd by prologue) |
//! +---------------------------+
//! | ... |
//! | clobbered callee-saves |
//! SP at end of prologue ----> | (pushed by prologue) |
//! +---------------------------+
//! | [alignment as needed] |
//! | ... |
//! | args for call |
//! SP before making a call --> | (pushed at callsite) |
//! +---------------------------+
//!
//! (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! Note that we support multi-value returns in two ways. First, we allow for
//! multiple return-value registers. Second, if teh appropriate flag is set, we
//! support the SpiderMonkey Wasm ABI. For details of the multi-value return
//! ABI, see:
//!
//! https://searchfox.org/mozilla-central/rev/bc3600def806859c31b2c7ac06e3d69271052a89/js/src/wasm/WasmStubs.h#134
//!
//! In brief:
//! - Return values are processed in *reverse* order.
//! - The first return value in this order (so the last return) goes into the
//! ordinary return register.
//! - Any further returns go in a struct-return area, allocated upwards (in
//! address order) during the reverse traversal.
//! - This struct-return area is provided by the caller, and a pointer to its
//! start is passed as an invisible last (extra) argument. Normally the caller
//! will allocate this area on the stack. When we generate calls, we place it
//! just above the on-stack argument area.
//! - So, for example, a function returning 4 i64's (v0, v1, v2, v3), with no
//! formal arguments, would:
//! - Accept a pointer `P` to the struct return area as a hidden argument in the
//! first argument register on entry.
//! - Return v3 in the one and only return-value register.
//! - Return v2 in memory at `[P]`.
//! - Return v1 in memory at `[P+8]`.
//! - Return v0 in memory at `[P+16]`.
use super::abi::*;
use crate::binemit::StackMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, StackSlot};
use crate::machinst::*;
use crate::settings;
use crate::CodegenResult;
use crate::{ir, isa};
use alloc::vec::Vec;
use log::{debug, trace};
use regalloc::{RealReg, Reg, RegClass, Set, SpillSlot, Writable};
use smallvec::{smallvec, SmallVec};
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::mem;
/// A location for an argument or return value.
#[derive(Clone, Copy, Debug)]
pub enum ABIArg {
/// In a real register (or set of registers).
Reg(
ValueRegs<RealReg>,
ir::Type,
ir::ArgumentExtension,
ir::ArgumentPurpose,
),
/// Arguments only: on stack, at given offset from SP at entry.
Stack(i64, ir::Type, ir::ArgumentExtension, ir::ArgumentPurpose),
}
impl ABIArg {
/// Get the purpose of this arg.
fn get_purpose(self) -> ir::ArgumentPurpose {
match self {
ABIArg::Reg(_, _, _, purpose) => purpose,
ABIArg::Stack(_, _, _, purpose) => purpose,
}
}
}
/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
/// Arguments.
Args,
/// Return values.
Rets,
}
/// Is an instruction returned by an ABI machine-specific backend a safepoint,
/// or not?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum InstIsSafepoint {
/// The instruction is a safepoint.
Yes,
/// The instruction is not a safepoint.
No,
}
/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
/// Offset from the frame pointer, possibly making use of a specific type
/// for a scaled indexing operation.
FPOffset(i64, ir::Type),
/// Offset from the nominal stack pointer, possibly making use of a specific
/// type for a scaled indexing operation.
NominalSPOffset(i64, ir::Type),
/// Offset from the real stack pointer, possibly making use of a specific
/// type for a scaled indexing operation.
SPOffset(i64, ir::Type),
}
impl StackAMode {
/// Offset by an addend.
pub fn offset(self, addend: i64) -> Self {
match self {
StackAMode::FPOffset(off, ty) => StackAMode::FPOffset(off + addend, ty),
StackAMode::NominalSPOffset(off, ty) => StackAMode::NominalSPOffset(off + addend, ty),
StackAMode::SPOffset(off, ty) => StackAMode::SPOffset(off + addend, ty),
}
}
}
/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
/// The instruction type.
type I: VCodeInst;
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
fn word_bits() -> u32;
/// Returns the number of bytes in a word.
fn word_bytes() -> u32 {
return Self::word_bits() / 8;
}
/// Returns word-size integer type.
fn word_type() -> Type {
match Self::word_bits() {
32 => I32,
64 => I64,
_ => unreachable!(),
}
}
/// Returns word register class.
fn word_reg_class() -> RegClass {
match Self::word_bits() {
32 => RegClass::I32,
64 => RegClass::I64,
_ => unreachable!(),
}
}
/// Returns required stack alignment in bytes.
fn stack_align(call_conv: isa::CallConv) -> u32;
/// Process a list of parameters or return values and allocate them to registers
/// and stack slots.
///
/// Returns the list of argument locations, the stack-space used (rounded up
/// to as alignment requires), and if `add_ret_area_ptr` was passed, the
/// index of the extra synthetic arg that was added.
fn compute_arg_locs(
call_conv: isa::CallConv,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)>;
/// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
/// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;
/// Generate a load from the stack.
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Generate a store to the stack.
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
/// Generate a move.
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
/// Generate an integer-extend operation.
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
is_signed: bool,
from_bits: u8,
to_bits: u8,
) -> Self::I;
/// Generate a return instruction.
fn gen_ret() -> Self::I;
/// Generate an "epilogue placeholder" instruction, recognized by lowering
/// when using the Baldrdash ABI.
fn gen_epilogue_placeholder() -> Self::I;
/// Generate an add-with-immediate. Note that even if this uses a scratch
/// register, it must satisfy two requirements:
///
/// - The add-imm sequence must only clobber caller-save registers, because
/// it will be placed in the prologue before the clobbered callee-save
/// registers are saved.
///
/// - The add-imm sequence must work correctly when `from_reg` and/or
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I>;
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
/// the stack pointer is less than the given limit register (assuming the
/// stack grows downward).
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
/// Generate an instruction to compute an address of a stack slot (FP- or
/// SP-based offset).
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Get a fixed register to use to compute a stack limit. This is needed for
/// certain sequences generated after the register allocator has already
/// run. This must satisfy two requirements:
///
/// - It must be a caller-save register, because it will be clobbered in the
/// prologue before the clobbered callee-save registers are saved.
///
/// - It must be safe to pass as an argument and/or destination to
/// `gen_add_imm()`. This is relevant when an addition with a large
/// immediate needs its own temporary; it cannot use the same fixed
/// temporary as this one.
fn get_stacklimit_reg() -> Reg;
/// Generate a store to the given [base+offset] address.
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
/// Generate a load from the given [base+offset] address.
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
/// Adjust the stack pointer up or down.
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
/// Generate a meta-instruction that adjusts the nominal SP offset.
fn gen_nominal_sp_adj(amount: i32) -> Self::I;
/// Generate the usual frame-setup sequence for this architecture: e.g.,
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
/// AArch64.
fn gen_prologue_frame_setup() -> SmallInstVec<Self::I>;
/// Generate the usual frame-restore sequence for this architecture.
fn gen_epilogue_frame_restore() -> SmallInstVec<Self::I>;
/// Generate a probestack call.
fn gen_probestack(_frame_size: u32) -> SmallInstVec<Self::I>;
/// Generate a clobber-save sequence. This takes the list of *all* registers
/// written/modified by the function body. The implementation here is
/// responsible for determining which of these are callee-saved according to
/// the ABI. It should return a sequence of instructions that "push" or
/// otherwise save these values to the stack. The sequence of instructions
/// should adjust the stack pointer downward, and should align as necessary
/// according to ABI requirements.
///
/// Returns stack bytes used as well as instructions. Does not adjust
/// nominal SP offset; caller will do that.
fn gen_clobber_save(
call_conv: isa::CallConv,
flags: &settings::Flags,
clobbers: &Set<Writable<RealReg>>,
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> (u64, SmallVec<[Self::I; 16]>);
/// Generate a clobber-restore sequence. This sequence should perform the
/// opposite of the clobber-save sequence generated above, assuming that SP
/// going into the sequence is at the same point that it was left when the
/// clobber-save sequence finished.
fn gen_clobber_restore(
call_conv: isa::CallConv,
flags: &settings::Flags,
clobbers: &Set<Writable<RealReg>>,
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> SmallVec<[Self::I; 16]>;
/// Generate a call instruction/sequence. This method is provided one
/// temporary register to use to synthesize the called address, if needed.
fn gen_call(
dest: &CallDest,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: ir::Opcode,
tmp: Writable<Reg>,
callee_conv: isa::CallConv,
callee_conv: isa::CallConv,
) -> SmallVec<[(InstIsSafepoint, Self::I); 2]>;
/// Get the number of spillslots required for the given register-class and
/// type.
fn get_number_of_spillslots_for_value(rc: RegClass, ty: Type) -> u32;
/// Get the current virtual-SP offset from an instruction-emission state.
fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;
/// Get the "nominal SP to FP" offset from an instruction-emission state.
fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;
/// Get all caller-save registers, that is, registers that we expect
/// not to be saved across a call to a callee with the given ABI.
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> Vec<Writable<Reg>>;
/// Get the needed extension mode, given the mode attached to the argument
/// in the signature and the calling convention. The input (the attribute in
/// the signature) specifies what extension type should be done *if* the ABI
/// requires extension to the full register; this method's return value
/// indicates whether the extension actually *will* be done.
fn get_ext_mode(
call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension;
}
/// ABI information shared between body (callee) and caller.
struct ABISig {
/// Argument locations (regs or stack slots). Stack offsets are relative to
/// SP on entry to function.
args: Vec<ABIArg>,
/// Return-value locations. Stack offsets are relative to the return-area
/// pointer.
rets: Vec<ABIArg>,
/// Space on stack used to store arguments.
stack_arg_space: i64,
/// Space on stack used to store return values.
stack_ret_space: i64,
/// Index in `args` of the stack-return-value-area argument.
stack_ret_arg: Option<usize>,
/// Calling convention used.
call_conv: isa::CallConv,
}
impl ABISig {
fn from_func_sig<M: ABIMachineSpec>(sig: &ir::Signature) -> CodegenResult<ABISig> {
// Compute args and retvals from signature. Handle retvals first,
// because we may need to add a return-area arg to the args.
let (rets, stack_ret_space, _) = M::compute_arg_locs(
sig.call_conv,
&sig.returns,
ArgsOrRets::Rets,
/* extra ret-area ptr = */ false,
)?;
let need_stack_return_area = stack_ret_space > 0;
let (args, stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
sig.call_conv,
&sig.params,
ArgsOrRets::Args,
need_stack_return_area,
)?;
trace!(
"ABISig: sig {:?} => args = {:?} rets = {:?} arg stack = {} ret stack = {} stack_ret_arg = {:?}",
sig,
args,
rets,
stack_arg_space,
stack_ret_space,
stack_ret_arg
);
Ok(ABISig {
args,
rets,
stack_arg_space,
stack_ret_space,
stack_ret_arg,
call_conv: sig.call_conv,
})
}
}
/// ABI object for a function body.
pub struct ABICalleeImpl<M: ABIMachineSpec> {
/// Signature: arg and retval regs.
sig: ABISig,
/// Offsets to each stackslot.
stackslots: Vec<u32>,
/// Total stack size of all stackslots.
stackslots_size: u32,
/// Stack size to be reserved for outgoing arguments.
outgoing_args_size: u32,
/// Clobbered registers, from regalloc.
clobbered: Set<Writable<RealReg>>,
/// Total number of spillslots, from regalloc.
spillslots: Option<usize>,
/// Storage allocated for the fixed part of the stack frame. This is
/// usually the same as the total frame size below, except in the case
/// of the baldrdash calling convention.
fixed_frame_storage_size: u32,
/// "Total frame size", as defined by "distance between FP and nominal SP".
/// Some items are pushed below nominal SP, so the function may actually use
/// more stack than this would otherwise imply. It is simply the initial
/// frame/allocation size needed for stackslots and spillslots.
total_frame_size: Option<u32>,
/// The register holding the return-area pointer, if needed.
ret_area_ptr: Option<Writable<Reg>>,
/// Calling convention this function expects.
call_conv: isa::CallConv,
/// The settings controlling this function's compilation.
flags: settings::Flags,
/// Whether or not this function is a "leaf", meaning it calls no other
/// functions
is_leaf: bool,
/// If this function has a stack limit specified, then `Reg` is where the
/// stack limit will be located after the instructions specified have been
/// executed.
///
/// Note that this is intended for insertion into the prologue, if
/// present. Also note that because the instructions here execute in the
/// prologue this happens after legalization/register allocation/etc so we
/// need to be extremely careful with each instruction. The instructions are
/// manually register-allocated and carefully only use caller-saved
/// registers and keep nothing live after this sequence of instructions.
stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
/// Are we to invoke the probestack function in the prologue? If so,
/// what is the minimum size at which we must invoke it?
probestack_min_frame: Option<u32>,
_mach: PhantomData<M>,
}
fn get_special_purpose_param_register(
f: &ir::Function,
abi: &ABISig,
purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
let idx = f.signature.special_param_index(purpose)?;
match abi.args[idx] {
ABIArg::Reg(regs, ..) => Some(regs.only_reg().unwrap().to_reg()),
ABIArg::Stack(..) => None,
}
}
impl<M: ABIMachineSpec> ABICalleeImpl<M> {
/// Create a new body ABI instance.
pub fn new(f: &ir::Function, flags: settings::Flags) -> CodegenResult<Self> {
debug!("ABI: func signature {:?}", f.signature);
let sig = ABISig::from_func_sig::<M>(&f.signature)?;
let call_conv = f.signature.call_conv;
// Only these calling conventions are supported.
debug_assert!(
call_conv == isa::CallConv::SystemV
|| call_conv == isa::CallConv::Fast
|| call_conv == isa::CallConv::Cold
|| call_conv.extends_baldrdash(),
"Unsupported calling convention: {:?}",
call_conv
);
// Compute stackslot locations and total stackslot size.
let mut stack_offset: u32 = 0;
let mut stackslots = vec![];
for (stackslot, data) in f.stack_slots.iter() {
let off = stack_offset;
stack_offset += data.size;
let mask = M::word_bytes() - 1;
stack_offset = (stack_offset + mask) & !mask;
debug_assert_eq!(stackslot.as_u32() as usize, stackslots.len());
stackslots.push(off);
}
// Figure out what instructions, if any, will be needed to check the
// stack limit. This can either be specified as a special-purpose
// argument or as a global value which often calculates the stack limit
// from the arguments.
let stack_limit =
get_special_purpose_param_register(f, &sig, ir::ArgumentPurpose::StackLimit)
.map(|reg| (reg, smallvec![]))
.or_else(|| f.stack_limit.map(|gv| gen_stack_limit::<M>(f, &sig, gv)));
// Determine whether a probestack call is required for large enough
// frames (and the minimum frame size if so).
let probestack_min_frame = if flags.enable_probestack() {
assert!(
!flags.probestack_func_adjusts_sp(),
"SP-adjusting probestack not supported in new backends"
);
Some(1 << flags.probestack_size_log2())
} else {
None
};
Ok(Self {
sig,
stackslots,
stackslots_size: stack_offset,
outgoing_args_size: 0,
clobbered: Set::empty(),
spillslots: None,
fixed_frame_storage_size: 0,
total_frame_size: None,
ret_area_ptr: None,
call_conv,
flags,
is_leaf: f.is_leaf(),
stack_limit,
probestack_min_frame,
_mach: PhantomData,
})
}
/// Inserts instructions necessary for checking the stack limit into the
/// prologue.
///
/// This function will generate instructions necessary for perform a stack
/// check at the header of a function. The stack check is intended to trap
/// if the stack pointer goes below a particular threshold, preventing stack
/// overflow in wasm or other code. The `stack_limit` argument here is the
/// register which holds the threshold below which we're supposed to trap.
/// This function is known to allocate `stack_size` bytes and we'll push
/// instructions onto `insts`.
///
/// Note that the instructions generated here are special because this is
/// happening so late in the pipeline (e.g. after register allocation). This
/// means that we need to do manual register allocation here and also be
/// careful to not clobber any callee-saved or argument registers. For now
/// this routine makes do with the `spilltmp_reg` as one temporary
/// register, and a second register of `tmp2` which is caller-saved. This
/// should be fine for us since no spills should happen in this sequence of
/// instructions, so our register won't get accidentally clobbered.
///
/// No values can be live after the prologue, but in this case that's ok
/// because we just need to perform a stack check before progressing with
/// the rest of the function.
fn insert_stack_check(
&self,
stack_limit: Reg,
stack_size: u32,
insts: &mut SmallInstVec<M::I>,
) {
// With no explicit stack allocated we can just emit the simple check of
// the stack registers against the stack limit register, and trap if
// it's out of bounds.
if stack_size == 0 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
return;
}
// Note that the 32k stack size here is pretty special. See the
// documentation in x86/abi.rs for why this is here. The general idea is
// that we're protecting against overflow in the addition that happens
// below.
if stack_size >= 32 * 1024 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
}
// Add the `stack_size` to `stack_limit`, placing the result in
// `scratch`.
//
// Note though that `stack_limit`'s register may be the same as
// `scratch`. If our stack size doesn't fit into an immediate this
// means we need a second scratch register for loading the stack size
// into a register.
let scratch = Writable::from_reg(M::get_stacklimit_reg());
insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
}
}
/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
f: &ir::Function,
abi: &ABISig,
gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
let mut insts = smallvec![];
let reg = generate_gv::<M>(f, abi, gv, &mut insts);
return (reg, insts);
}
fn generate_gv<M: ABIMachineSpec>(
f: &ir::Function,
abi: &ABISig,
gv: ir::GlobalValue,
insts: &mut SmallInstVec<M::I>,
) -> Reg {
match f.global_values[gv] {
// Return the direct register the vmcontext is in
ir::GlobalValueData::VMContext => {
get_special_purpose_param_register(f, abi, ir::ArgumentPurpose::VMContext)
.expect("no vmcontext parameter found")
}
// Load our base value into a register, then load from that register
// in to a temporary register.
ir::GlobalValueData::Load {
base,
offset,
global_type: _,
readonly: _,
} => {
let base = generate_gv::<M>(f, abi, base, insts);
let into_reg = Writable::from_reg(M::get_stacklimit_reg());
insts.push(M::gen_load_base_offset(
into_reg,
base,
offset.into(),
M::word_type(),
));
return into_reg.to_reg();
}
ref other => panic!("global value for stack limit not supported: {}", other),
}
}
/// Return a type either from an optional type hint, or if not, from the default
/// type associated with the given register's class. This is used to generate
/// loads/spills appropriately given the type of value loaded/stored (which may
/// be narrower than the spillslot). We usually have the type because the
/// regalloc usually provides the vreg being spilled/reloaded, and we know every
/// vreg's type. However, the regalloc *can* request a spill/reload without an
/// associated vreg when needed to satisfy a safepoint (which requires all
/// ref-typed values, even those in real registers in the original vcode, to be
/// in spillslots).
fn ty_from_ty_hint_or_reg_class<M: ABIMachineSpec>(r: Reg, ty: Option<Type>) -> Type {
match (ty, r.get_class()) {
// If the type is provided
(Some(t), _) => t,
// If no type is provided, this should be a register spill for a
// safepoint, so we only expect I32/I64 (integer) registers.
(None, rc) if rc == M::word_reg_class() => M::word_type(),
_ => panic!("Unexpected register class!"),
}
}
fn gen_move_multi<M: ABIMachineSpec>(
dst: ValueRegs<Writable<Reg>>,
src: ValueRegs<Reg>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
for ((&dst, &src), &ty) in dst.regs().iter().zip(src.regs().iter()).zip(tys.iter()) {
ret.push(M::gen_move(dst, src, ty));
}
ret
}
fn gen_load_stack_multi<M: ABIMachineSpec>(
from: StackAMode,
dst: ValueRegs<Writable<Reg>>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
let mut offset = 0;
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&dst, &ty) in dst.regs().iter().zip(tys.iter()) {
ret.push(M::gen_load_stack(from.offset(offset), dst, ty));
offset += ty.bytes() as i64;
}
ret
}
fn gen_store_stack_multi<M: ABIMachineSpec>(
from: StackAMode,
src: ValueRegs<Reg>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
let mut offset = 0;
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
ret.push(M::gen_store_stack(from.offset(offset), src, ty));
offset += ty.bytes() as i64;
}
ret
}
fn gen_store_base_offset_multi<M: ABIMachineSpec>(
base: Reg,
mut offset: i32,
src: ValueRegs<Reg>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
ret.push(M::gen_store_base_offset(base, offset, src, ty));
offset += ty.bytes() as i32;
}
ret
}
impl<M: ABIMachineSpec> ABICallee for ABICalleeImpl<M> {
type I = M::I;
fn temp_needed(&self) -> Option<Type> {
if self.sig.stack_ret_arg.is_some() {
Some(M::word_type())
} else {
None
}
}
fn init(&mut self, maybe_tmp: Option<Writable<Reg>>) {
if self.sig.stack_ret_arg.is_some() {
assert!(maybe_tmp.is_some());
self.ret_area_ptr = maybe_tmp;
}
}
fn accumulate_outgoing_args_size(&mut self, size: u32) {
if size > self.outgoing_args_size {
self.outgoing_args_size = size;
}
}
fn flags(&self) -> &settings::Flags {
&self.flags
}
fn call_conv(&self) -> isa::CallConv {
self.sig.call_conv
}
fn liveins(&self) -> Set<RealReg> {
let mut set: Set<RealReg> = Set::empty();
for &arg in &self.sig.args {
if let ABIArg::Reg(regs, ..) = arg {
for &r in regs.regs() {
set.insert(r);
}
}
}
set
}
fn liveouts(&self) -> Set<RealReg> {
let mut set: Set<RealReg> = Set::empty();
for &ret in &self.sig.rets {
if let ABIArg::Reg(regs, ..) = ret {
for &r in regs.regs() {
set.insert(r);
}
}
}
set
}
fn num_args(&self) -> usize {
self.sig.args.len()
}
fn num_retvals(&self) -> usize {
self.sig.rets.len()
}
fn num_stackslots(&self) -> usize {
self.stackslots.len()
}
fn gen_copy_arg_to_regs(
&self,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<Self::I> {
match &self.sig.args[idx] {
// Extension mode doesn't matter (we're copying out, not in; we
// ignore high bits by convention).
&ABIArg::Reg(regs, ty, ..) => {
gen_move_multi::<M>(into_regs, regs.map(|r| r.to_reg()), ty)
}
&ABIArg::Stack(off, ty, ..) => gen_load_stack_multi::<M>(
StackAMode::FPOffset(M::fp_to_arg_offset(self.call_conv, &self.flags) + off, ty),
into_regs,
ty,
),
}
}
fn arg_is_needed_in_body(&self, idx: usize) -> bool {
match self.sig.args[idx].get_purpose() {
// Special Baldrdash-specific pseudo-args that are present only to
// fill stack slots. Won't ever be used as ordinary values in the
// body.
ir::ArgumentPurpose::CalleeTLS | ir::ArgumentPurpose::CallerTLS => false,
_ => true,
}
}
fn gen_copy_regs_to_retval(
&self,
idx: usize,
from_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<Self::I> {
let mut ret = smallvec![];
let word_bits = M::word_bits() as u8;
match &self.sig.rets[idx] {
&ABIArg::Reg(regs, ty, ext, ..) => {
let from_bits = ty_bits(ty) as u8;
let dest_regs = writable_value_regs(regs.map(|r| r.to_reg()));
let ext = M::get_ext_mode(self.sig.call_conv, ext);
match (ext, from_bits) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < word_bits =>
{
let signed = ext == ArgumentExtension::Sext;
let dest_reg = dest_regs
.only_reg()
.expect("extension only possible from one-reg value");
let from_reg = from_regs
.only_reg()
.expect("extension only possible from one-reg value");
ret.push(M::gen_extend(
dest_reg,
from_reg.to_reg(),
signed,
from_bits,
/* to_bits = */ word_bits,
));
}
_ => ret.extend(
gen_move_multi::<M>(dest_regs, non_writable_value_regs(from_regs), ty)
.into_iter(),
),
};
}
&ABIArg::Stack(off, mut ty, ext, ..) => {
let from_bits = ty_bits(ty) as u8;
// A machine ABI implementation should ensure that stack frames
// have "reasonable" size. All current ABIs for machinst
// backends (aarch64 and x64) enforce a 128MB limit.
let off = i32::try_from(off)
.expect("Argument stack offset greater than 2GB; should hit impl limit first");
let ext = M::get_ext_mode(self.sig.call_conv, ext);
// Trash the from_reg; it should be its last use.
match (ext, from_bits) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < word_bits =>
{
let from_reg = from_regs
.only_reg()
.expect("extension only possible from one-reg value");
assert_eq!(M::word_reg_class(), from_reg.to_reg().get_class());
let signed = ext == ArgumentExtension::Sext;
ret.push(M::gen_extend(
from_reg,
from_reg.to_reg(),
signed,
from_bits,
/* to_bits = */ word_bits,
));
// Store the extended version.
ty = M::word_type();
}
_ => {}
};
ret.extend(
gen_store_base_offset_multi::<M>(
self.ret_area_ptr.unwrap().to_reg(),
off,
non_writable_value_regs(from_regs),
ty,
)
.into_iter(),
);
}
}
ret
}
fn gen_retval_area_setup(&self) -> Option<Self::I> {
if let Some(i) = self.sig.stack_ret_arg {
let insts = self.gen_copy_arg_to_regs(i, ValueRegs::one(self.ret_area_ptr.unwrap()));
let inst = insts.into_iter().next().unwrap();
trace!(
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
inst,
self.ret_area_ptr.unwrap().to_reg()
);
Some(inst)
} else {
trace!("gen_retval_area_setup: not needed");
None
}
}
fn gen_ret(&self) -> Self::I {
M::gen_ret()
}
fn gen_epilogue_placeholder(&self) -> Self::I {
M::gen_epilogue_placeholder()
}
fn set_num_spillslots(&mut self, slots: usize) {
self.spillslots = Some(slots);
}
fn set_clobbered(&mut self, clobbered: Set<Writable<RealReg>>) {
self.clobbered = clobbered;
}
/// Load from a stackslot.
fn load_stackslot(
&self,
slot: StackSlot,
offset: u32,
ty: Type,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<Self::I> {
// Offset from beginning of stackslot area, which is at nominal SP (see
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
let sp_off: i64 = stack_off + (offset as i64);
trace!("load_stackslot: slot {} -> sp_off {}", slot, sp_off);
gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
}
/// Store to a stackslot.
fn store_stackslot(
&self,
slot: StackSlot,
offset: u32,
ty: Type,
from_regs: ValueRegs<Reg>,
) -> SmallInstVec<Self::I> {
// Offset from beginning of stackslot area, which is at nominal SP (see
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
let sp_off: i64 = stack_off + (offset as i64);
trace!("store_stackslot: slot {} -> sp_off {}", slot, sp_off);
gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
}
/// Produce an instruction that computes a stackslot address.
fn stackslot_addr(&self, slot: StackSlot, offset: u32, into_reg: Writable<Reg>) -> Self::I {
// Offset from beginning of stackslot area, which is at nominal SP (see
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
let sp_off: i64 = stack_off + (offset as i64);
M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
}
/// Load from a spillslot.
fn load_spillslot(
&self,
slot: SpillSlot,
ty: Type,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<Self::I> {
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
let islot = slot.get() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
}
/// Store to a spillslot.
fn store_spillslot(
&self,
slot: SpillSlot,
ty: Type,
from_regs: ValueRegs<Reg>,
) -> SmallInstVec<Self::I> {
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
let islot = slot.get() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
}
fn spillslots_to_stack_map(
&self,
slots: &[SpillSlot],
state: &<Self::I as MachInstEmit>::State,
) -> StackMap {
let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
assert!(virtual_sp_offset >= 0);
trace!(
"spillslots_to_stackmap: slots = {:?}, state = {:?}",
slots,
state
);
let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
let bytes = M::word_bytes();
let map_words = (map_size + bytes - 1) / bytes;
let mut bits = std::iter::repeat(false)
.take(map_words as usize)
.collect::<Vec<bool>>();
let first_spillslot_word =
((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
for &slot in slots {
let slot = slot.get() as usize;
bits[first_spillslot_word + slot] = true;
}
StackMap::from_slice(&bits[..])
}
fn gen_prologue(&mut self) -> SmallInstVec<Self::I> {
let mut insts = smallvec![];
if !self.call_conv.extends_baldrdash() {
// set up frame
insts.extend(M::gen_prologue_frame_setup().into_iter());
}
let bytes = M::word_bytes();
let mut total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
if self.call_conv.extends_baldrdash() {
debug_assert!(
!self.flags.enable_probestack(),
"baldrdash does not expect cranelift to emit stack probes"
);
total_stacksize += self.flags.baldrdash_prologue_words() as u32 * bytes;
}
let mask = M::stack_align(self.call_conv) - 1;
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
if !self.call_conv.extends_baldrdash() {
// Leaf functions with zero stack don't need a stack check if one's
// specified, otherwise always insert the stack check.
if total_stacksize > 0 || !self.is_leaf {
if let Some((reg, stack_limit_load)) = &self.stack_limit {
insts.extend(stack_limit_load.clone());
self.insert_stack_check(*reg, total_stacksize, &mut insts);
}
if let Some(min_frame) = &self.probestack_min_frame {
if total_stacksize >= *min_frame {
insts.extend(M::gen_probestack(total_stacksize));
}
}
}
if total_stacksize > 0 {
self.fixed_frame_storage_size += total_stacksize;
}
}
// N.B.: "nominal SP", which we use to refer to stackslots and
// spillslots, is defined to be equal to the stack pointer at this point
// in the prologue.
//
// If we push any clobbers below, we emit a virtual-SP adjustment
// meta-instruction so that the nominal SP references behave as if SP
// were still at this point. See documentation for
// [crate::machinst::abi_impl](this module) for more details on
// stackframe layout and nominal SP maintenance.
// Save clobbered registers.
let (clobber_size, clobber_insts) = M::gen_clobber_save(
self.call_conv,
&self.flags,
&self.clobbered,
self.fixed_frame_storage_size,
self.outgoing_args_size,
);
insts.extend(clobber_insts);
let sp_adj = self.outgoing_args_size as i32 + clobber_size as i32;
if sp_adj > 0 {
insts.push(M::gen_nominal_sp_adj(sp_adj));
}
self.total_frame_size = Some(total_stacksize);
insts
}
fn gen_epilogue(&self) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
// Restore clobbered registers.
insts.extend(M::gen_clobber_restore(
self.call_conv,
&self.flags,
&self.clobbered,
self.fixed_frame_storage_size,
self.outgoing_args_size,
));
// N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
// references to nominal SP offsets before the return below, and (ii) the instruction
// emission tracks running SP offset linearly (in straight-line order), not according to
// the CFG, so early returns in the middle of function bodies would cause an incorrect
// offset for the rest of the body.
if !self.call_conv.extends_baldrdash() {
insts.extend(M::gen_epilogue_frame_restore());
insts.push(M::gen_ret());
}
debug!("Epilogue: {:?}", insts);
insts
}
fn frame_size(&self) -> u32 {
self.total_frame_size
.expect("frame size not computed before prologue generation")
}
fn stack_args_size(&self) -> u32 {
self.sig.stack_arg_space as u32
}
fn get_spillslot_size(&self, rc: RegClass, ty: Type) -> u32 {
M::get_number_of_spillslots_for_value(rc, ty)
}
fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, ty: Option<Type>) -> Self::I {
let ty = ty_from_ty_hint_or_reg_class::<M>(from_reg.to_reg(), ty);
self.store_spillslot(to_slot, ty, ValueRegs::one(from_reg.to_reg()))
.into_iter()
.next()
.unwrap()
}
fn gen_reload(
&self,
to_reg: Writable<RealReg>,
from_slot: SpillSlot,
ty: Option<Type>,
) -> Self::I {
let ty = ty_from_ty_hint_or_reg_class::<M>(to_reg.to_reg().to_reg(), ty);
self.load_spillslot(
from_slot,
ty,
writable_value_regs(ValueRegs::one(to_reg.to_reg().to_reg())),
)
.into_iter()
.next()
.unwrap()
}
fn unwind_info_kind(&self) -> UnwindInfoKind {
match self.sig.call_conv {
#[cfg(feature = "unwind")]
isa::CallConv::Fast | isa::CallConv::Cold | isa::CallConv::SystemV => {
UnwindInfoKind::SystemV
}
#[cfg(feature = "unwind")]
isa::CallConv::WindowsFastcall => UnwindInfoKind::Windows,
_ => UnwindInfoKind::None,
}
}
}
fn abisig_to_uses_and_defs<M: ABIMachineSpec>(sig: &ABISig) -> (Vec<Reg>, Vec<Writable<Reg>>) {
// Compute uses: all arg regs.
let mut uses = Vec::new();
for arg in &sig.args {
match arg {
&ABIArg::Reg(regs, ..) => uses.extend(regs.regs().iter().map(|r| r.to_reg())),
_ => {}
}
}
// Compute defs: all retval regs, and all caller-save (clobbered) regs.
let mut defs = M::get_regs_clobbered_by_call(sig.call_conv);
for ret in &sig.rets {
match ret {
&ABIArg::Reg(regs, ..) => {
defs.extend(regs.regs().iter().map(|r| Writable::from_reg(r.to_reg())))
}
_ => {}
}
}
(uses, defs)
}
/// ABI object for a callsite.
pub struct ABICallerImpl<M: ABIMachineSpec> {
/// The called function's signature.
sig: ABISig,
/// All uses for the callsite, i.e., function args.
uses: Vec<Reg>,
/// All defs for the callsite, i.e., return values and caller-saves.
defs: Vec<Writable<Reg>>,
/// Call destination.
dest: CallDest,
/// Actual call opcode; used to distinguish various types of calls.
opcode: ir::Opcode,
/// Caller's calling convention.
caller_conv: isa::CallConv,
_mach: PhantomData<M>,
}
/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
/// Call to an ExtName (named function symbol).
ExtName(ir::ExternalName, RelocDistance),
/// Indirect call to a function pointer in a register.
Reg(Reg),
}
impl<M: ABIMachineSpec> ABICallerImpl<M> {
/// Create a callsite ABI object for a call directly to the specified function.
pub fn from_func(
sig: &ir::Signature,
extname: &ir::ExternalName,
dist: RelocDistance,
caller_conv: isa::CallConv,
) -> CodegenResult<ABICallerImpl<M>> {
let sig = ABISig::from_func_sig::<M>(sig)?;
let (uses, defs) = abisig_to_uses_and_defs::<M>(&sig);
Ok(ABICallerImpl {
sig,
uses,
defs,
dest: CallDest::ExtName(extname.clone(), dist),
opcode: ir::Opcode::Call,
caller_conv,
_mach: PhantomData,
})
}
/// Create a callsite ABI object for a call to a function pointer with the
/// given signature.
pub fn from_ptr(
sig: &ir::Signature,
ptr: Reg,
opcode: ir::Opcode,
caller_conv: isa::CallConv,
) -> CodegenResult<ABICallerImpl<M>> {
let sig = ABISig::from_func_sig::<M>(sig)?;
let (uses, defs) = abisig_to_uses_and_defs::<M>(&sig);
Ok(ABICallerImpl {
sig,
uses,
defs,
dest: CallDest::Reg(ptr),
opcode,
caller_conv,
_mach: PhantomData,
})
}
}
fn adjust_stack_and_nominal_sp<M: ABIMachineSpec, C: LowerCtx<I = M::I>>(
ctx: &mut C,
off: i32,
is_sub: bool,
) {
if off == 0 {
return;
}
let amt = if is_sub { -off } else { off };
for inst in M::gen_sp_reg_adjust(amt) {
ctx.emit(inst);
}
ctx.emit(M::gen_nominal_sp_adj(-amt));
}
impl<M: ABIMachineSpec> ABICaller for ABICallerImpl<M> {
type I = M::I;
fn num_args(&self) -> usize {
if self.sig.stack_ret_arg.is_some() {
self.sig.args.len() - 1
} else {
self.sig.args.len()
}
}
fn accumulate_outgoing_args_size<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
ctx.abi().accumulate_outgoing_args_size(off as u32);
}
fn emit_stack_pre_adjust<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
adjust_stack_and_nominal_sp::<M, C>(ctx, off as i32, /* is_sub = */ true)
}
fn emit_stack_post_adjust<C: LowerCtx<I = Self::I>>(&self, ctx: &mut C) {
let off = self.sig.stack_arg_space + self.sig.stack_ret_space;
adjust_stack_and_nominal_sp::<M, C>(ctx, off as i32, /* is_sub = */ false)
}
fn emit_copy_regs_to_arg<C: LowerCtx<I = Self::I>>(
&self,
ctx: &mut C,
idx: usize,
from_regs: ValueRegs<Reg>,
) {
let word_rc = M::word_reg_class();
let word_bits = M::word_bits() as usize;
match &self.sig.args[idx] {
&ABIArg::Reg(regs, ty, ext, _) => {
let ext = M::get_ext_mode(self.sig.call_conv, ext);
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
let reg = regs.only_reg().unwrap();
assert_eq!(word_rc, reg.get_class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
ctx.emit(M::gen_extend(
Writable::from_reg(reg.to_reg()),
from_regs.only_reg().unwrap(),
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
} else {
for insn in gen_move_multi::<M>(
writable_value_regs(regs.map(|r| r.to_reg())),
from_regs,
ty,
) {
ctx.emit(insn);
}
}
}
&ABIArg::Stack(off, mut ty, ext, _) => {
let ext = M::get_ext_mode(self.sig.call_conv, ext);
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
let from_reg = from_regs
.only_reg()
.expect("only one reg for sub-word value width");
assert_eq!(word_rc, from_reg.get_class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
// Extend in place in the source register. Our convention is to
// treat high bits as undefined for values in registers, so this
// is safe, even for an argument that is nominally read-only.
ctx.emit(M::gen_extend(
Writable::from_reg(from_reg),
from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
// Store the extended version.
ty = M::word_type();
}
for insn in gen_store_stack_multi::<M>(StackAMode::SPOffset(off, ty), from_regs, ty)
{
ctx.emit(insn);
}
}
}
}
fn emit_copy_retval_to_regs<C: LowerCtx<I = Self::I>>(
&self,
ctx: &mut C,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
) {
match &self.sig.rets[idx] {
// Extension mode doesn't matter because we're copying out, not in,
// and we ignore high bits in our own registers by convention.
&ABIArg::Reg(regs, ty, _, _) => {
for insn in gen_move_multi::<M>(into_regs, regs.map(|r| r.to_reg()), ty) {
ctx.emit(insn);
}
}
&ABIArg::Stack(off, ty, _, _) => {
let ret_area_base = self.sig.stack_arg_space;
for insn in gen_load_stack_multi::<M>(
StackAMode::SPOffset(off + ret_area_base, ty),
into_regs,
ty,
) {
ctx.emit(insn);
}
}
}
}
fn emit_call<C: LowerCtx<I = Self::I>>(&mut self, ctx: &mut C) {
let (uses, defs) = (
mem::replace(&mut self.uses, Default::default()),
mem::replace(&mut self.defs, Default::default()),
);
let word_type = M::word_type();
if let Some(i) = self.sig.stack_ret_arg {
let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
let ret_area_base = self.sig.stack_arg_space;
ctx.emit(M::gen_get_stack_addr(
StackAMode::SPOffset(ret_area_base, I8),
rd,
I8,
));
self.emit_copy_regs_to_arg(ctx, i, ValueRegs::one(rd.to_reg()));
}
let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
for (is_safepoint, inst) in M::gen_call(
&self.dest,
uses,
defs,
self.opcode,
tmp,
self.sig.call_conv,
self.caller_conv,
)
.into_iter()
{
match is_safepoint {
InstIsSafepoint::Yes => ctx.emit_safepoint(inst),
InstIsSafepoint::No => ctx.emit(inst),
}
}
}
}