1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
//! # `VMExternRef`
//!
//! `VMExternRef` is a reference-counted box for any kind of data that is
//! external and opaque to running Wasm. Sometimes it might hold a Wasmtime
//! thing, other times it might hold something from a Wasmtime embedder and is
//! opaque even to us. It is morally equivalent to `Rc<dyn Any>` in Rust, but
//! additionally always fits in a pointer-sized word. `VMExternRef` is
//! non-nullable, but `Option<VMExternRef>` is a null pointer.
//!
//! The one part of `VMExternRef` that can't ever be opaque to us is the
//! reference count. Even when we don't know what's inside an `VMExternRef`, we
//! need to be able to manipulate its reference count as we add and remove
//! references to it. And we need to do this from compiled Wasm code, so it must
//! be `repr(C)`!
//!
//! ## Memory Layout
//!
//! `VMExternRef` itself is just a pointer to an `VMExternData`, which holds the
//! opaque, boxed value, its reference count, and its vtable pointer.
//!
//! The `VMExternData` struct is *preceded* by the dynamically-sized value boxed
//! up and referenced by one or more `VMExternRef`s:
//!
//! ```text
//!      ,-------------------------------------------------------.
//!      |                                                       |
//!      V                                                       |
//!     +----------------------------+-----------+-----------+   |
//!     | dynamically-sized value... | ref_count | value_ptr |---'
//!     +----------------------------+-----------+-----------+
//!                                  | VMExternData          |
//!                                  +-----------------------+
//!                                   ^
//! +-------------+                   |
//! | VMExternRef |-------------------+
//! +-------------+                   |
//!                                   |
//! +-------------+                   |
//! | VMExternRef |-------------------+
//! +-------------+                   |
//!                                   |
//!   ...                            ===
//!                                   |
//! +-------------+                   |
//! | VMExternRef |-------------------'
//! +-------------+
//! ```
//!
//! The `value_ptr` member always points backwards to the start of the
//! dynamically-sized value (which is also the start of the heap allocation for
//! this value-and-`VMExternData` pair). Because it is a `dyn` pointer, it is
//! fat, and also points to the value's `Any` vtable.
//!
//! The boxed value and the `VMExternRef` footer are held a single heap
//! allocation. The layout described above is used to make satisfying the
//! value's alignment easy: we just need to ensure that the heap allocation used
//! to hold everything satisfies its alignment. It also ensures that we don't
//! need a ton of excess padding between the `VMExternData` and the value for
//! values with large alignment.
//!
//! ## Reference Counting, Wasm Functions, and Garbage Collection
//!
//! For host VM code, we use plain reference counting, where cloning increments
//! the reference count, and dropping decrements it. We can avoid many of the
//! on-stack increment/decrement operations that typically plague the
//! performance of reference counting via Rust's ownership and borrowing system.
//! Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
//! either avoids the reference count increment or delays it until if/when the
//! `VMExternRef` is cloned.
//!
//! When passing a `VMExternRef` into compiled Wasm code, we don't want to do
//! reference count mutations for every compiled `local.{get,set}`, nor for
//! every function call. Therefore, we use a variation of **deferred reference
//! counting**, where we only mutate reference counts when storing
//! `VMExternRef`s somewhere that outlives the activation: into a global or
//! table. Simultaneously, we over-approximate the set of `VMExternRef`s that
//! are inside Wasm function activations. Periodically, we walk the stack at GC
//! safe points, and use stack map information to precisely identify the set of
//! `VMExternRef`s inside Wasm activations. Then we take the difference between
//! this precise set and our over-approximation, and decrement the reference
//! count for each of the `VMExternRef`s that are in our over-approximation but
//! not in the precise set. Finally, the over-approximation is replaced with the
//! precise set.
//!
//! The `VMExternRefActivationsTable` implements the over-approximized set of
//! `VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
//! passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
//! compiled Wasm function logically "borrows" the `VMExternRef` from the
//! table. Similarly, `global.get` and `table.get` operations clone the gotten
//! `VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
//! reference out of the table.
//!
//! When a `VMExternRef` is returned to host code from a Wasm function, the host
//! increments the reference count (because the reference is logically
//! "borrowed" from the `VMExternRefActivationsTable` and the reference count
//! from the table will be dropped at the next GC).
//!
//! For more general information on deferred reference counting, see *An
//! Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
//! https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf

use std::alloc::Layout;
use std::any::Any;
use std::cell::{Cell, RefCell, UnsafeCell};
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::rc::Rc;
use wasmtime_environ::{ir::StackMap, StackMapInformation};

/// An external reference to some opaque data.
///
/// `VMExternRef`s dereference to their underlying opaque data as `dyn Any`.
///
/// Unlike the `externref` in the Wasm spec, `VMExternRef`s are non-nullable,
/// and always point to a valid value. You may use `Option<VMExternRef>` to
/// represent nullable references, and `Option<VMExternRef>` is guaranteed to
/// have the same size and alignment as a raw pointer, with `None` represented
/// with the null pointer.
///
/// `VMExternRef`s are reference counted, so cloning is a cheap, shallow
/// operation. It also means they are inherently shared, so you may not get a
/// mutable, exclusive reference to their inner contents, only a shared,
/// immutable reference. You may use interior mutability with `RefCell` or
/// `Mutex` to work around this restriction, if necessary.
///
/// `VMExternRef`s have pointer-equality semantics, not structural-equality
/// semantics. Given two `VMExternRef`s `a` and `b`, `a == b` only if `a` and
/// `b` point to the same allocation. `a` and `b` are considered not equal, even
/// if `a` and `b` are two different identical copies of the same data, if they
/// are in two different allocations. The hashing and ordering implementations
/// also only operate on the pointer.
///
/// # Example
///
/// ```
/// # fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use std::cell::RefCell;
/// use wasmtime_runtime::VMExternRef;
///
/// // Open a file. Wasm doesn't know about files, but we can let Wasm instances
/// // work with files via opaque `externref` handles.
/// let file = std::fs::File::create("some/file/path")?;
///
/// // Wrap the file up as an `VMExternRef` that can be passed to Wasm.
/// let extern_ref_to_file = VMExternRef::new(RefCell::new(file));
///
/// // `VMExternRef`s dereference to `dyn Any`, so you can use `Any` methods to
/// // perform runtime type checks and downcasts.
///
/// assert!(extern_ref_to_file.is::<RefCell<std::fs::File>>());
/// assert!(!extern_ref_to_file.is::<String>());
///
/// if let Some(file) = extern_ref_to_file.downcast_ref::<RefCell<std::fs::File>>() {
///     use std::io::Write;
///     let mut file = file.borrow_mut();
///     writeln!(&mut file, "Hello, `VMExternRef`!")?;
/// }
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[repr(transparent)]
pub struct VMExternRef(NonNull<VMExternData>);

#[repr(C)]
pub(crate) struct VMExternData {
    // Implicit, dynamically-sized member that always preceded an
    // `VMExternData`.
    //
    // value: [u8],
    //
    /// The reference count for this `VMExternData` and value. When it reaches
    /// zero, we can safely destroy the value and free this heap
    /// allocation. This is an `UnsafeCell`, rather than plain `Cell`, because
    /// it can be modified by compiled Wasm code.
    ///
    /// Note: this field's offset must be kept in sync with
    /// `wasmtime_environ::VMOffsets::vm_extern_data_ref_count()` which is
    /// currently always zero.
    ref_count: UnsafeCell<usize>,

    /// Always points to the implicit, dynamically-sized `value` member that
    /// precedes this `VMExternData`.
    value_ptr: NonNull<dyn Any>,
}

impl Clone for VMExternRef {
    #[inline]
    fn clone(&self) -> VMExternRef {
        self.extern_data().increment_ref_count();
        VMExternRef(self.0)
    }
}

impl Drop for VMExternRef {
    #[inline]
    fn drop(&mut self) {
        let data = self.extern_data();
        data.decrement_ref_count();
        if data.get_ref_count() == 0 {
            // Drop our live reference to `data` before we drop it itself.
            drop(data);
            unsafe {
                VMExternData::drop_and_dealloc(self.0);
            }
        }
    }
}

impl VMExternData {
    /// Get the `Layout` for a value with the given size and alignment, and the
    /// offset within that layout where the `VMExternData` footer resides.
    ///
    /// This doesn't take a `value: &T` because `VMExternRef::new_with` hasn't
    /// constructed a `T` value yet, and it isn't generic over `T` because
    /// `VMExternData::drop_and_dealloc` doesn't know what `T` to use, and has
    /// to use `std::mem::{size,align}_of_val` instead.
    unsafe fn layout_for(value_size: usize, value_align: usize) -> (Layout, usize) {
        let extern_data_size = mem::size_of::<VMExternData>();
        let extern_data_align = mem::align_of::<VMExternData>();

        let value_and_padding_size = round_up_to_align(value_size, extern_data_align).unwrap();

        let alloc_align = std::cmp::max(value_align, extern_data_align);
        let alloc_size = value_and_padding_size + extern_data_size;

        debug_assert!(Layout::from_size_align(alloc_size, alloc_align).is_ok());
        (
            Layout::from_size_align_unchecked(alloc_size, alloc_align),
            value_and_padding_size,
        )
    }

    /// Drop the inner value and then free this `VMExternData` heap allocation.
    pub(crate) unsafe fn drop_and_dealloc(mut data: NonNull<VMExternData>) {
        // Note: we introduce a block scope so that we drop the live
        // reference to the data before we free the heap allocation it
        // resides within after this block.
        let (alloc_ptr, layout) = {
            let data = data.as_mut();
            debug_assert_eq!(data.get_ref_count(), 0);

            // Same thing, but for the dropping the reference to `value` before
            // we drop it itself.
            let (layout, _) = {
                let value = data.value_ptr.as_ref();
                Self::layout_for(mem::size_of_val(value), mem::align_of_val(value))
            };

            ptr::drop_in_place(data.value_ptr.as_ptr());
            let alloc_ptr = data.value_ptr.cast::<u8>();

            (alloc_ptr, layout)
        };

        ptr::drop_in_place(data.as_ptr());
        std::alloc::dealloc(alloc_ptr.as_ptr(), layout);
    }

    #[inline]
    fn get_ref_count(&self) -> usize {
        unsafe { *self.ref_count.get() }
    }

    #[inline]
    fn increment_ref_count(&self) {
        unsafe {
            let count = self.ref_count.get();
            *count += 1;
        }
    }

    #[inline]
    fn decrement_ref_count(&self) {
        unsafe {
            let count = self.ref_count.get();
            *count -= 1;
        }
    }
}

#[inline]
fn round_up_to_align(n: usize, align: usize) -> Option<usize> {
    debug_assert!(align.is_power_of_two());
    let align_minus_one = align - 1;
    Some(n.checked_add(align_minus_one)? & !align_minus_one)
}

impl VMExternRef {
    /// Wrap the given value inside an `VMExternRef`.
    pub fn new<T>(value: T) -> VMExternRef
    where
        T: 'static + Any,
    {
        VMExternRef::new_with(|| value)
    }

    /// Construct a new `VMExternRef` in place by invoking `make_value`.
    pub fn new_with<T>(make_value: impl FnOnce() -> T) -> VMExternRef
    where
        T: 'static + Any,
    {
        unsafe {
            let (layout, footer_offset) =
                VMExternData::layout_for(mem::size_of::<T>(), mem::align_of::<T>());

            let alloc_ptr = std::alloc::alloc(layout);
            let alloc_ptr = NonNull::new(alloc_ptr).unwrap_or_else(|| {
                std::alloc::handle_alloc_error(layout);
            });

            let value_ptr = alloc_ptr.cast::<T>();
            ptr::write(value_ptr.as_ptr(), make_value());

            let value_ref: &T = value_ptr.as_ref();
            let value_ref: &dyn Any = value_ref as _;
            let value_ptr: *const dyn Any = value_ref as _;
            let value_ptr: *mut dyn Any = value_ptr as _;
            let value_ptr = NonNull::new_unchecked(value_ptr);

            let extern_data_ptr =
                alloc_ptr.cast::<u8>().as_ptr().add(footer_offset) as *mut VMExternData;
            ptr::write(
                extern_data_ptr,
                VMExternData {
                    ref_count: UnsafeCell::new(1),
                    value_ptr,
                },
            );

            VMExternRef(NonNull::new_unchecked(extern_data_ptr))
        }
    }

    /// Turn this `VMExternRef` into a raw, untyped pointer.
    ///
    /// Unlike `into_raw`, this does not consume and forget `self`. It is *not*
    /// safe to use `from_raw` on pointers returned from this method; only use
    /// `clone_from_raw`!
    ///
    ///  Nor does this method increment the reference count. You must ensure
    ///  that `self` (or some other clone of `self`) stays alive until
    ///  `clone_from_raw` is called.
    pub fn as_raw(&self) -> *mut u8 {
        let ptr = self.0.cast::<u8>().as_ptr();
        ptr
    }

    /// Recreate a `VMExternRef` from a pointer returned from a previous call to
    /// `VMExternRef::as_raw`.
    ///
    /// # Safety
    ///
    /// Wildly unsafe to use with anything other than the result of a previous
    /// `as_raw` call!
    ///
    /// Additionally, it is your responsibility to ensure that this raw
    /// `VMExternRef`'s reference count has not dropped to zero. Failure to do
    /// so will result in use after free!
    pub unsafe fn clone_from_raw(ptr: *mut u8) -> Self {
        debug_assert!(!ptr.is_null());
        let x = VMExternRef(NonNull::new_unchecked(ptr).cast());
        x.extern_data().increment_ref_count();
        x
    }

    /// Get the strong reference count for this `VMExternRef`.
    pub fn strong_count(&self) -> usize {
        self.extern_data().get_ref_count()
    }

    #[inline]
    fn extern_data(&self) -> &VMExternData {
        unsafe { self.0.as_ref() }
    }
}

/// Methods that would normally be trait implementations, but aren't to avoid
/// potential footguns around `VMExternRef`'s pointer-equality semantics.
///
/// Note that none of these methods are on `&self`, they all require a
/// fully-qualified `VMExternRef::foo(my_ref)` invocation.
impl VMExternRef {
    /// Check whether two `VMExternRef`s point to the same inner allocation.
    ///
    /// Note that this uses pointer-equality semantics, not structural-equality
    /// semantics, and so only pointers are compared, and doesn't use any `Eq`
    /// or `PartialEq` implementation of the pointed-to values.
    #[inline]
    pub fn eq(a: &Self, b: &Self) -> bool {
        ptr::eq(a.0.as_ptr() as *const _, b.0.as_ptr() as *const _)
    }

    /// Hash a given `VMExternRef`.
    ///
    /// Note that this just hashes the pointer to the inner value, it does *not*
    /// use the inner value's `Hash` implementation (if any).
    #[inline]
    pub fn hash<H>(externref: &Self, hasher: &mut H)
    where
        H: Hasher,
    {
        ptr::hash(externref.0.as_ptr() as *const _, hasher);
    }

    /// Compare two `VMExternRef`s.
    ///
    /// Note that this uses pointer-equality semantics, not structural-equality
    /// semantics, and so only pointers are compared, and doesn't use any `Cmp`
    /// or `PartialCmp` implementation of the pointed-to values.
    #[inline]
    pub fn cmp(a: &Self, b: &Self) -> Ordering {
        let a = a.0.as_ptr() as usize;
        let b = b.0.as_ptr() as usize;
        a.cmp(&b)
    }
}

impl Deref for VMExternRef {
    type Target = dyn Any;

    fn deref(&self) -> &dyn Any {
        unsafe { self.extern_data().value_ptr.as_ref() }
    }
}

/// A wrapper around a `VMExternRef` that implements `Eq` and `Hash` with
/// pointer semantics.
///
/// We use this so that we can morally put `VMExternRef`s inside of `HashSet`s
/// even though they don't implement `Eq` and `Hash` to avoid foot guns.
#[derive(Clone)]
struct VMExternRefWithTraits(VMExternRef);

impl Hash for VMExternRefWithTraits {
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        VMExternRef::hash(&self.0, hasher)
    }
}

impl PartialEq for VMExternRefWithTraits {
    fn eq(&self, other: &Self) -> bool {
        VMExternRef::eq(&self.0, &other.0)
    }
}

impl Eq for VMExternRefWithTraits {}

type TableElem = UnsafeCell<Option<VMExternRef>>;

/// A table that over-approximizes the set of `VMExternRef`s that any Wasm
/// activation on this thread is currently using.
///
/// Under the covers, this is a simple bump allocator that allows duplicate
/// entries. Deduplication happens at GC time.
#[repr(C)]
pub struct VMExternRefActivationsTable {
    /// Bump-allocation finger within the `chunk`.
    ///
    /// NB: this is an `UnsafeCell` because it is written to by compiled Wasm
    /// code.
    next: UnsafeCell<NonNull<TableElem>>,

    /// Pointer to just after the `chunk`.
    ///
    /// This is *not* within the current chunk and therefore is not a valid
    /// place to insert a reference!
    end: NonNull<TableElem>,

    /// Bump allocation chunk that stores fast-path insertions.
    chunk: Box<[TableElem]>,

    /// When unioned with `chunk`, this is an over-approximation of the GC roots
    /// on the stack, inside Wasm frames.
    ///
    /// This is used by slow-path insertion, and when a GC cycle finishes, is
    /// re-initialized to the just-discovered precise set of stack roots (which
    /// immediately becomes an over-approximation again as soon as Wasm runs and
    /// potentially drops references).
    over_approximated_stack_roots: RefCell<HashSet<VMExternRefWithTraits>>,

    /// The precise set of on-stack, inside-Wasm GC roots that we discover via
    /// walking the stack and interpreting stack maps.
    ///
    /// This is *only* used inside the `gc` function, and is empty otherwise. It
    /// is just part of this struct so that we can reuse the allocation, rather
    /// than create a new hash set every GC.
    precise_stack_roots: RefCell<HashSet<VMExternRefWithTraits>>,

    /// A pointer to a `u8` on the youngest host stack frame before we called
    /// into Wasm for the first time. When walking the stack in garbage
    /// collection, if we don't find this frame, then we failed to walk every
    /// Wasm stack frame, which means we failed to find all on-stack,
    /// inside-a-Wasm-frame roots, and doing a GC could lead to freeing one of
    /// those missed roots, and use after free.
    stack_canary: Cell<Option<NonNull<u8>>>,
}

impl VMExternRefActivationsTable {
    const CHUNK_SIZE: usize = 4096 / mem::size_of::<usize>();

    /// Create a new `VMExternRefActivationsTable`.
    pub fn new() -> Self {
        let chunk = Self::new_chunk(Self::CHUNK_SIZE);
        let next = chunk.as_ptr() as *mut TableElem;
        let end = unsafe { next.add(chunk.len()) };

        VMExternRefActivationsTable {
            next: UnsafeCell::new(NonNull::new(next).unwrap()),
            end: NonNull::new(end).unwrap(),
            chunk,
            over_approximated_stack_roots: RefCell::new(HashSet::with_capacity(Self::CHUNK_SIZE)),
            precise_stack_roots: RefCell::new(HashSet::with_capacity(Self::CHUNK_SIZE)),
            stack_canary: Cell::new(None),
        }
    }

    fn new_chunk(size: usize) -> Box<[UnsafeCell<Option<VMExternRef>>]> {
        assert!(size >= Self::CHUNK_SIZE);
        (0..size).map(|_| UnsafeCell::new(None)).collect()
    }

    /// Try and insert a `VMExternRef` into this table.
    ///
    /// This is a fast path that only succeeds when the bump chunk has the
    /// capacity for the requested insertion.
    ///
    /// If the insertion fails, then the `VMExternRef` is given back. Callers
    /// may attempt a GC to free up space and try again, or may call
    /// `insert_slow_path` to infallibly insert the reference (potentially
    /// allocating additional space in the table to hold it).
    #[inline]
    pub fn try_insert(&self, externref: VMExternRef) -> Result<(), VMExternRef> {
        unsafe {
            let next = *self.next.get();
            if next == self.end {
                return Err(externref);
            }

            debug_assert!(
                (*next.as_ref().get()).is_none(),
                "slots >= the `next` bump finger are always `None`"
            );
            ptr::write(next.as_ptr(), UnsafeCell::new(Some(externref)));

            let next = NonNull::new_unchecked(next.as_ptr().add(1));
            debug_assert!(next <= self.end);
            *self.next.get() = next;

            Ok(())
        }
    }

    /// Insert a reference into the table, falling back on a GC to clear up
    /// space if the table is already full.
    ///
    /// # Unsafety
    ///
    /// The same as `gc`.
    #[inline]
    pub unsafe fn insert_with_gc(
        &self,
        externref: VMExternRef,
        stack_maps_registry: &StackMapRegistry,
    ) {
        if let Err(externref) = self.try_insert(externref) {
            self.gc_and_insert_slow(externref, stack_maps_registry);
        }
    }

    #[inline(never)]
    unsafe fn gc_and_insert_slow(
        &self,
        externref: VMExternRef,
        stack_maps_registry: &StackMapRegistry,
    ) {
        gc(stack_maps_registry, self);

        // Might as well insert right into the hash set, rather than the bump
        // chunk, since we are already on a slow path and we get de-duplication
        // this way.
        let mut roots = self.over_approximated_stack_roots.borrow_mut();
        roots.insert(VMExternRefWithTraits(externref));
    }

    fn num_filled_in_bump_chunk(&self) -> usize {
        let next = unsafe { *self.next.get() };
        let bytes_unused = (self.end.as_ptr() as usize) - (next.as_ptr() as usize);
        let slots_unused = bytes_unused / mem::size_of::<TableElem>();
        self.chunk.len().saturating_sub(slots_unused)
    }

    fn elements(&self, mut f: impl FnMut(&VMExternRef)) {
        let roots = self.over_approximated_stack_roots.borrow();
        for elem in roots.iter() {
            f(&elem.0);
        }

        // The bump chunk is not all the way full, so we only iterate over its
        // filled-in slots.
        let num_filled = self.num_filled_in_bump_chunk();
        for slot in self.chunk.iter().take(num_filled) {
            if let Some(elem) = unsafe { &*slot.get() } {
                f(elem);
            }
        }
    }

    fn insert_precise_stack_root(
        precise_stack_roots: &mut HashSet<VMExternRefWithTraits>,
        root: NonNull<VMExternData>,
    ) {
        let root = unsafe { VMExternRef::clone_from_raw(root.as_ptr() as *mut _) };
        precise_stack_roots.insert(VMExternRefWithTraits(root));
    }

    /// Sweep the bump allocation table after we've discovered our precise stack
    /// roots.
    fn sweep(&self, precise_stack_roots: &mut HashSet<VMExternRefWithTraits>) {
        // Swap out the over-approximated set so we can distinguish between the
        // over-approximation before we started sweeping, and any new elements
        // we might insert into the table because of re-entering Wasm via an
        // `externref`'s destructor. The new elements must be kept alive for
        // memory safety, but we keep this set around because we likely want to
        // reuse its allocation/capacity for the new `precise_stack_roots` in
        // the next GC cycle.
        let mut old_over_approximated = mem::replace(
            &mut *self.over_approximated_stack_roots.borrow_mut(),
            Default::default(),
        );

        // Sweep our bump chunk.
        //
        // Just in case an `externref` destructor calls back into Wasm, passing
        // more `externref`s into that Wasm, which requires the `externref`s to
        // be inserted into this `VMExternRefActivationsTable`, make sure `next
        // == end` so that they go into the over-approximation hash set.
        let num_filled = self.num_filled_in_bump_chunk();
        unsafe {
            *self.next.get() = self.end;
        }
        for slot in self.chunk.iter().take(num_filled) {
            unsafe {
                *slot.get() = None;
            }
        }
        debug_assert!(
            self.chunk
                .iter()
                .all(|slot| unsafe { (*slot.get()).as_ref().is_none() }),
            "after sweeping the bump chunk, all slots should be `None`"
        );

        // Reset our `next` finger to the start of the bump allocation chunk.
        unsafe {
            let next = self.chunk.as_ptr() as *mut TableElem;
            debug_assert!(!next.is_null());
            *self.next.get() = NonNull::new_unchecked(next);
        }

        // The current `precise_stack_roots` becomes our new over-appoximated
        // set for the next GC cycle.
        let mut over_approximated = self.over_approximated_stack_roots.borrow_mut();
        mem::swap(&mut *precise_stack_roots, &mut *over_approximated);

        // And finally, the new `precise_stack_roots` should be cleared and
        // remain empty until the next GC cycle.
        //
        // However, if an `externref` destructor called re-entered Wasm with
        // more `externref`s, then the temp over-approximated set we were using
        // during sweeping (now `precise_stack_roots`) is not empty, and we need
        // to keep its references alive in our new over-approximated set.
        over_approximated.extend(precise_stack_roots.drain());

        // If we didn't re-enter Wasm during destructors (likely),
        // `precise_stack_roots` has zero capacity, and the old
        // over-approximated has a bunch of capacity. Reuse whichever set has
        // most capacity.
        if old_over_approximated.capacity() > precise_stack_roots.capacity() {
            old_over_approximated.clear();
            *precise_stack_roots = old_over_approximated;
        }
    }

    /// Set the stack canary around a call into Wasm.
    ///
    /// The return value should not be dropped until after the Wasm call has
    /// returned.
    ///
    /// While this method is always safe to call (or not call), it is unsafe to
    /// call the `wasmtime_runtime::gc` function unless this method is called at
    /// the proper times and its return value properly outlives its Wasm call.
    ///
    /// For `gc` to be safe, this is only *strictly required* to surround the
    /// oldest host-->Wasm stack frame transition on this thread, but repeatedly
    /// calling it is idempotent and cheap, so it is recommended to call this
    /// for every host-->Wasm call.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use wasmtime_runtime::*;
    ///
    /// # let get_table_from_somewhere = || unimplemented!();
    /// let table: &VMExternRefActivationsTable = get_table_from_somewhere();
    ///
    /// // Set the canary before a Wasm call. The canary should always be a
    /// // local on the stack.
    /// let canary = 0;
    /// let auto_reset_canary = table.set_stack_canary(&canary);
    ///
    /// // Do the call into Wasm.
    /// # let call_into_wasm = || unimplemented!();
    /// call_into_wasm();
    ///
    /// // Only drop the value returned by `set_stack_canary` after the Wasm
    /// // call has returned.
    /// drop(auto_reset_canary);
    /// ```
    pub fn set_stack_canary<'a>(&'a self, canary: &u8) -> impl Drop + 'a {
        let should_reset = if self.stack_canary.get().is_none() {
            let canary = canary as *const u8 as *mut u8;
            self.stack_canary.set(Some(unsafe {
                debug_assert!(!canary.is_null());
                NonNull::new_unchecked(canary)
            }));
            true
        } else {
            false
        };

        return AutoResetCanary {
            table: self,
            should_reset,
        };

        struct AutoResetCanary<'a> {
            table: &'a VMExternRefActivationsTable,
            should_reset: bool,
        }

        impl Drop for AutoResetCanary<'_> {
            fn drop(&mut self) {
                if self.should_reset {
                    debug_assert!(self.table.stack_canary.get().is_some());
                    self.table.stack_canary.set(None);
                }
            }
        }
    }
}

/// A registry of stack maps for currently active Wasm modules.
#[derive(Default)]
pub struct StackMapRegistry {
    inner: RefCell<StackMapRegistryInner>,
}

#[derive(Default)]
struct StackMapRegistryInner {
    /// A map from the highest pc in a module, to its stack maps.
    ///
    /// For details, see the comment above `GlobalFrameInfo::ranges`.
    ranges: BTreeMap<usize, ModuleStackMaps>,
}

#[derive(Debug)]
struct ModuleStackMaps {
    /// The range of PCs that this module covers. Different modules must always
    /// have distinct ranges.
    range: std::ops::Range<usize>,

    /// A map from a PC in this module (that is a GC safepoint) to its
    /// associated stack map. If `None` then it means that the PC is the start
    /// of a range which has no stack map.
    pc_to_stack_map: Vec<(usize, Option<Rc<StackMap>>)>,
}

impl StackMapRegistry {
    /// Register the stack maps for a given module.
    ///
    /// The stack maps should be given as an iterator over a function's PC range
    /// in memory (that is, where the JIT actually allocated and emitted the
    /// function's code at), and the stack maps and code offsets within that
    /// range for each of its GC safepoints.
    pub fn register_stack_maps<'a>(
        &self,
        stack_maps: impl IntoIterator<Item = (std::ops::Range<usize>, &'a [StackMapInformation])>,
    ) {
        let mut min = usize::max_value();
        let mut max = 0;
        let mut pc_to_stack_map = vec![];
        let mut last_is_none_marker = true;

        for (range, infos) in stack_maps {
            let len = range.end - range.start;

            min = std::cmp::min(min, range.start);
            max = std::cmp::max(max, range.end);

            // Add a marker between functions indicating that this function's pc
            // starts with no stack map so when our binary search later on finds
            // a pc between the start of the function and the function's first
            // stack map it doesn't think the previous stack map is our stack
            // map.
            //
            // We skip this if the previous entry pushed was also a `None`
            // marker, in which case the starting pc already has no stack map.
            // This is also skipped if the first `code_offset` is zero since
            // what we'll push applies for the first pc anyway.
            if !last_is_none_marker && (infos.is_empty() || infos[0].code_offset > 0) {
                pc_to_stack_map.push((range.start, None));
                last_is_none_marker = true;
            }

            for info in infos {
                assert!((info.code_offset as usize) < len);
                pc_to_stack_map.push((
                    range.start + (info.code_offset as usize),
                    Some(Rc::new(info.stack_map.clone())),
                ));
                last_is_none_marker = false;
            }
        }

        if pc_to_stack_map.is_empty() {
            // Nothing to register.
            return;
        }

        let module_stack_maps = ModuleStackMaps {
            range: min..max,
            pc_to_stack_map,
        };

        let mut inner = self.inner.borrow_mut();

        // Check if we've already registered this module.
        if let Some(existing_module) = inner.ranges.get(&max) {
            assert_eq!(existing_module.range, module_stack_maps.range);
            debug_assert_eq!(
                existing_module.pc_to_stack_map,
                module_stack_maps.pc_to_stack_map,
            );
            return;
        }

        // Assert that this chunk of ranges doesn't collide with any other known
        // chunks.
        if let Some((_, prev)) = inner.ranges.range(max..).next() {
            assert!(prev.range.start > max);
        }
        if let Some((prev_end, _)) = inner.ranges.range(..=min).next_back() {
            assert!(*prev_end < min);
        }

        let old = inner.ranges.insert(max, module_stack_maps);
        assert!(old.is_none());
    }

    /// Lookup the stack map for the given PC, if any.
    pub fn lookup_stack_map(&self, pc: usize) -> Option<Rc<StackMap>> {
        let inner = self.inner.borrow();
        let stack_maps = inner.module_stack_maps(pc)?;

        // Do a binary search to find the stack map for the given PC.
        //
        // Because GC safepoints are technically only associated with a single
        // PC, we should ideally only care about `Ok(index)` values returned
        // from the binary search. However, safepoints are inserted right before
        // calls, and there are two things that can disturb the PC/offset
        // associated with the safepoint versus the PC we actually use to query
        // for the stack map:
        //
        // 1. The `backtrace` crate gives us the PC in a frame that will be
        //    *returned to*, and where execution will continue from, rather than
        //    the PC of the call we are currently at. So we would need to
        //    disassemble one instruction backwards to query the actual PC for
        //    the stack map.
        //
        //    TODO: One thing we *could* do to make this a little less error
        //    prone, would be to assert/check that the nearest GC safepoint
        //    found is within `max_encoded_size(any kind of call instruction)`
        //    our queried PC for the target architecture.
        //
        // 2. Cranelift's stack maps only handle the stack, not
        //    registers. However, some references that are arguments to a call
        //    may need to be in registers. In these cases, what Cranelift will
        //    do is:
        //
        //      a. spill all the live references,
        //      b. insert a GC safepoint for those references,
        //      c. reload the references into registers, and finally
        //      d. make the call.
        //
        //    Step (c) adds drift between the GC safepoint and the location of
        //    the call, which is where we actually walk the stack frame and
        //    collect its live references.
        //
        //    Luckily, the spill stack slots for the live references are still
        //    up to date, so we can still find all the on-stack roots.
        //    Furthermore, we do not have a moving GC, so we don't need to worry
        //    whether the following code will reuse the references in registers
        //    (which would not have been updated to point to the moved objects)
        //    or reload from the stack slots (which would have been updated to
        //    point to the moved objects).
        let index = match stack_maps
            .pc_to_stack_map
            .binary_search_by_key(&pc, |(pc, _stack_map)| *pc)
        {
            // Exact hit.
            Ok(i) => i,

            // `Err(0)` means that the associated stack map would have been the
            // first element in the array if this pc had an associated stack
            // map, but this pc does not have an associated stack map. This can
            // only happen inside a Wasm frame if there are no live refs at this
            // pc.
            Err(0) => return None,

            Err(n) => n - 1,
        };

        let stack_map = stack_maps.pc_to_stack_map[index].1.as_ref()?.clone();
        Some(stack_map)
    }
}

impl StackMapRegistryInner {
    fn module_stack_maps(&self, pc: usize) -> Option<&ModuleStackMaps> {
        let (end, stack_maps) = self.ranges.range(pc..).next()?;
        if pc < stack_maps.range.start || *end < pc {
            None
        } else {
            Some(stack_maps)
        }
    }
}

#[derive(Debug, Default)]
struct DebugOnly<T> {
    inner: T,
}

impl<T> std::ops::Deref for DebugOnly<T> {
    type Target = T;

    fn deref(&self) -> &T {
        if cfg!(debug_assertions) {
            &self.inner
        } else {
            panic!(
                "only deref `DebugOnly` when `cfg(debug_assertions)` or \
                 inside a `debug_assert!(..)`"
            )
        }
    }
}

impl<T> std::ops::DerefMut for DebugOnly<T> {
    fn deref_mut(&mut self) -> &mut T {
        if cfg!(debug_assertions) {
            &mut self.inner
        } else {
            panic!(
                "only deref `DebugOnly` when `cfg(debug_assertions)` or \
                 inside a `debug_assert!(..)`"
            )
        }
    }
}

/// Perform garbage collection of `VMExternRef`s.
///
/// # Unsafety
///
/// You must have called `VMExternRefActivationsTable::set_stack_canary` for at
/// least the oldest host-->Wasm stack frame transition on this thread's stack
/// (it is idempotent to call it more than once) and keep its return value alive
/// across the duration of that host-->Wasm call.
///
/// Additionally, you must have registered the stack maps for every Wasm module
/// that has frames on the stack with the given `stack_maps_registry`.
pub unsafe fn gc(
    stack_maps_registry: &StackMapRegistry,
    externref_activations_table: &VMExternRefActivationsTable,
) {
    // We borrow the precise stack roots `RefCell` for the whole duration of
    // GC. Whether it is dynamically borrowed serves as a flag for detecting
    // re-entrancy into GC. Re-entrancy can occur if we do a GC, drop an
    // `externref`, and that `externref`'s destructor then triggers another
    // GC. Whenever we detect re-entrancy, we return and give the first,
    // outermost GC call priority.
    let mut precise_stack_roots = match externref_activations_table
        .precise_stack_roots
        .try_borrow_mut()
    {
        Err(_) => return,
        Ok(roots) => roots,
    };

    log::debug!("start GC");

    debug_assert!({
        // This set is only non-empty within this function. It is built up when
        // walking the stack and interpreting stack maps, and then drained back
        // into the activations table's bump-allocated space at the
        // end. Therefore, it should always be empty upon entering this
        // function.
        precise_stack_roots.is_empty()
    });

    // Whenever we call into Wasm from host code for the first time, we set a
    // stack canary. When we return to that host code, we unset the stack
    // canary. If there is *not* a stack canary, then there must be zero Wasm
    // frames on the stack. Therefore, we can simply reset the table without
    // walking the stack.
    let stack_canary = match externref_activations_table.stack_canary.get() {
        None => {
            if cfg!(debug_assertions) {
                // Assert that there aren't any Wasm frames on the stack.
                backtrace::trace(|frame| {
                    let stack_map = stack_maps_registry.lookup_stack_map(frame.ip() as usize);
                    assert!(stack_map.is_none());
                    true
                });
            }
            externref_activations_table.sweep(&mut precise_stack_roots);
            log::debug!("end GC");
            return;
        }
        Some(canary) => canary.as_ptr() as usize,
    };

    // There is a stack canary, so there must be Wasm frames on the stack. The
    // rest of this function consists of:
    //
    // * walking the stack,
    //
    // * finding the precise set of roots inside Wasm frames via our stack maps,
    //   and
    //
    // * resetting our bump-allocated table's over-approximation to the
    //   newly-discovered precise set.

    // The SP of the previous (younger) frame we processed.
    let mut last_sp = None;

    // Whether we have found our stack canary or not yet.
    let mut found_canary = false;

    // The `activations_table_set` is used for `debug_assert!`s checking that
    // every reference we read out from the stack via stack maps is actually in
    // the table. If that weren't true, than either we forgot to insert a
    // reference in the table when passing it into Wasm (a bug) or we are
    // reading invalid references from the stack (another bug).
    let mut activations_table_set: DebugOnly<HashSet<_>> = Default::default();
    if cfg!(debug_assertions) {
        externref_activations_table.elements(|elem| {
            activations_table_set.insert(elem.as_raw() as *mut VMExternData);
        });
    }

    backtrace::trace(|frame| {
        let pc = frame.ip() as usize;
        let sp = frame.sp() as usize;

        if let Some(stack_map) = stack_maps_registry.lookup_stack_map(pc) {
            debug_assert!(sp != 0, "we should always get a valid SP for Wasm frames");

            for i in 0..(stack_map.mapped_words() as usize) {
                if stack_map.get_bit(i) {
                    // Stack maps have one bit per word in the frame, and the
                    // zero^th bit is the *lowest* addressed word in the frame,
                    // i.e. the closest to the SP. So to get the `i`^th word in
                    // this frame, we add `i * sizeof(word)` to the SP.
                    let ptr_to_ref = sp + i * mem::size_of::<usize>();

                    let r = std::ptr::read(ptr_to_ref as *const *mut VMExternData);
                    debug_assert!(
                        r.is_null() || activations_table_set.contains(&r),
                        "every on-stack externref inside a Wasm frame should \
                         have an entry in the VMExternRefActivationsTable"
                    );
                    if let Some(r) = NonNull::new(r) {
                        VMExternRefActivationsTable::insert_precise_stack_root(
                            &mut precise_stack_roots,
                            r,
                        );
                    }
                }
            }
        }

        if let Some(last_sp) = last_sp {
            // We've found the stack canary when we walk over the frame that it
            // is contained within.
            found_canary |= last_sp <= stack_canary && stack_canary <= sp;
        }
        last_sp = Some(sp);

        // Keep walking the stack until we've found the canary, which is the
        // oldest frame before we ever called into Wasm. We can stop once we've
        // found it because there won't be any more Wasm frames, and therefore
        // there won't be anymore on-stack, inside-a-Wasm-frame roots.
        !found_canary
    });

    // Only sweep and reset the table if we found the stack canary, and
    // therefore know that we discovered all the on-stack, inside-a-Wasm-frame
    // roots. If we did *not* find the stack canary, then `libunwind` failed to
    // walk the whole stack, and we might be missing roots. Reseting the table
    // would free those missing roots while they are still in use, leading to
    // use-after-free.
    if found_canary {
        externref_activations_table.sweep(&mut precise_stack_roots);
    } else {
        log::warn!("did not find stack canary; skipping GC sweep");
        precise_stack_roots.clear();
    }

    log::debug!("end GC");
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::convert::TryInto;

    #[test]
    fn extern_ref_is_pointer_sized_and_aligned() {
        assert_eq!(mem::size_of::<VMExternRef>(), mem::size_of::<*mut ()>());
        assert_eq!(mem::align_of::<VMExternRef>(), mem::align_of::<*mut ()>());
        assert_eq!(
            mem::size_of::<Option<VMExternRef>>(),
            mem::size_of::<*mut ()>()
        );
        assert_eq!(
            mem::align_of::<Option<VMExternRef>>(),
            mem::align_of::<*mut ()>()
        );
    }

    #[test]
    fn ref_count_is_at_correct_offset() {
        let s = "hi";
        let s: &dyn Any = &s as _;
        let s: *const dyn Any = s as _;
        let s: *mut dyn Any = s as _;

        let extern_data = VMExternData {
            ref_count: UnsafeCell::new(0),
            value_ptr: NonNull::new(s).unwrap(),
        };

        let extern_data_ptr = &extern_data as *const _;
        let ref_count_ptr = &extern_data.ref_count as *const _;

        let actual_offset = (ref_count_ptr as usize) - (extern_data_ptr as usize);

        assert_eq!(
            wasmtime_environ::VMOffsets::vm_extern_data_ref_count(),
            actual_offset.try_into().unwrap(),
        );
    }

    #[test]
    fn table_next_is_at_correct_offset() {
        let table = VMExternRefActivationsTable::new();

        let table_ptr = &table as *const _;
        let next_ptr = &table.next as *const _;

        let actual_offset = (next_ptr as usize) - (table_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets {
            pointer_size: 8,
            num_signature_ids: 0,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_defined_functions: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_defined_globals: 0,
        };
        assert_eq!(
            offsets.vm_extern_ref_activation_table_next() as usize,
            actual_offset
        );
    }

    #[test]
    fn table_end_is_at_correct_offset() {
        let table = VMExternRefActivationsTable::new();

        let table_ptr = &table as *const _;
        let end_ptr = &table.end as *const _;

        let actual_offset = (end_ptr as usize) - (table_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets {
            pointer_size: 8,
            num_signature_ids: 0,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_defined_functions: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_defined_globals: 0,
        };
        assert_eq!(
            offsets.vm_extern_ref_activation_table_end() as usize,
            actual_offset
        );
    }
}