1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
//! A verifier for ensuring that functions are well formed.
//! It verifies:
//!
//! block integrity
//!
//! - All instructions reached from the `block_insts` iterator must belong to
//!   the block as reported by `inst_block()`.
//! - Every block must end in a terminator instruction, and no other instruction
//!   can be a terminator.
//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`.
//!
//! Instruction integrity
//!
//! - The instruction format must match the opcode.
//! - All result values must be created for multi-valued instructions.
//! - All referenced entities must exist. (Values, blocks, stack slots, ...)
//! - Instructions must not reference (eg. branch to) the entry block.
//!
//! SSA form
//!
//! - Values must be defined by an instruction that exists and that is inserted in
//!   a block, or be an argument of an existing block.
//! - Values used by an instruction must dominate the instruction.
//!
//! Control flow graph and dominator tree integrity:
//!
//! - All predecessors in the CFG must be branches to the block.
//! - All branches to a block must be present in the CFG.
//! - A recomputed dominator tree is identical to the existing one.
//!
//! Type checking
//!
//! - Compare input and output values against the opcode's type constraints.
//!   For polymorphic opcodes, determine the controlling type variable first.
//! - Branches and jumps must pass arguments to destination blocks that match the
//!   expected types exactly. The number of arguments must match.
//! - All blocks in a jump table must take no arguments.
//! - Function calls are type checked against their signature.
//! - The entry block must take arguments that match the signature of the current
//!   function.
//! - All return instructions must have return value operands matching the current
//!   function signature.
//!
//! Global values
//!
//! - Detect cycles in global values.
//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
//!
//! TODO:
//! Ad hoc checking
//!
//! - Stack slot loads and stores must be in-bounds.
//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
//!   range for their polymorphic type.
//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
//!   of arguments must match the destination type, and the lane indexes must be in range.

use self::flags::verify_flags;
use crate::dbg::DisplayList;
use crate::dominator_tree::DominatorTree;
use crate::entity::SparseSet;
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir;
use crate::ir::entities::AnyEntity;
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
use crate::ir::{
    types, ArgumentLoc, ArgumentPurpose, Block, Constant, FuncRef, Function, GlobalValue, Inst,
    InstructionData, JumpTable, Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef,
    ValueList, ValueLoc,
};
use crate::isa::TargetIsa;
use crate::iterators::IteratorExtras;
use crate::print_errors::pretty_verifier_error;
use crate::settings::FlagsOrIsa;
use crate::timing;
use alloc::collections::BTreeSet;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt::{self, Display, Formatter, Write};
use log::debug;
use thiserror::Error;

pub use self::cssa::verify_cssa;
pub use self::liveness::verify_liveness;
pub use self::locations::verify_locations;

mod cssa;
mod flags;
mod liveness;
mod locations;

/// A verifier error.
#[derive(Error, Debug, PartialEq, Eq, Clone)]
#[error("{}{}: {}", .location, format_context(.context), .message)]
pub struct VerifierError {
    /// The entity causing the verifier error.
    pub location: AnyEntity,
    /// Optionally provide some context for the given location; e.g., for `inst42` provide
    /// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
    pub context: Option<String>,
    /// The error message.
    pub message: String,
}

/// Helper for formatting Verifier::Error context.
fn format_context(context: &Option<String>) -> String {
    match context {
        None => "".to_string(),
        Some(c) => format!(" ({})", c),
    }
}

/// Convenience converter for making error-reporting less verbose.
///
/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
/// ```
/// use cranelift_codegen::verifier::VerifierErrors;
/// use cranelift_codegen::ir::Inst;
/// let mut errors = VerifierErrors::new();
/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
/// // note the double parenthenses to use this syntax
/// ```
impl<L, C, M> From<(L, C, M)> for VerifierError
where
    L: Into<AnyEntity>,
    C: Into<String>,
    M: Into<String>,
{
    fn from(items: (L, C, M)) -> Self {
        let (location, context, message) = items;
        Self {
            location: location.into(),
            context: Some(context.into()),
            message: message.into(),
        }
    }
}

/// Convenience converter for making error-reporting less verbose.
///
/// Same as above but without `context`.
impl<L, M> From<(L, M)> for VerifierError
where
    L: Into<AnyEntity>,
    M: Into<String>,
{
    fn from(items: (L, M)) -> Self {
        let (location, message) = items;
        Self {
            location: location.into(),
            context: None,
            message: message.into(),
        }
    }
}

/// Result of a step in the verification process.
///
/// Functions that return `VerifierStepResult<()>` should also take a
/// mutable reference to `VerifierErrors` as argument in order to report
/// errors.
///
/// Here, `Ok` represents a step that **did not lead to a fatal error**,
/// meaning that the verification process may continue. However, other (non-fatal)
/// errors might have been reported through the previously mentioned `VerifierErrors`
/// argument.
pub type VerifierStepResult<T> = Result<T, ()>;

/// Result of a verification operation.
///
/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
/// errors, this type always returns `Err` if an error (fatal or not) was reported.
pub type VerifierResult<T> = Result<T, VerifierErrors>;

/// List of verifier errors.
#[derive(Error, Debug, Default, PartialEq, Eq, Clone)]
pub struct VerifierErrors(pub Vec<VerifierError>);

impl VerifierErrors {
    /// Return a new `VerifierErrors` struct.
    #[inline]
    pub fn new() -> Self {
        Self(Vec::new())
    }

    /// Return whether no errors were reported.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Return whether one or more errors were reported.
    #[inline]
    pub fn has_error(&self) -> bool {
        !self.0.is_empty()
    }

    /// Return a `VerifierStepResult` that is fatal if at least one error was reported,
    /// and non-fatal otherwise.
    #[inline]
    pub fn as_result(&self) -> VerifierStepResult<()> {
        if self.is_empty() {
            Ok(())
        } else {
            Err(())
        }
    }

    /// Report an error, adding it to the list of errors.
    pub fn report(&mut self, error: impl Into<VerifierError>) {
        self.0.push(error.into());
    }

    /// Report a fatal error and return `Err`.
    pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
        self.report(error);
        Err(())
    }

    /// Report a non-fatal error and return `Ok`.
    pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
        self.report(error);
        Ok(())
    }
}

impl From<Vec<VerifierError>> for VerifierErrors {
    fn from(v: Vec<VerifierError>) -> Self {
        Self(v)
    }
}

impl Into<Vec<VerifierError>> for VerifierErrors {
    fn into(self) -> Vec<VerifierError> {
        self.0
    }
}

impl Into<VerifierResult<()>> for VerifierErrors {
    fn into(self) -> VerifierResult<()> {
        if self.is_empty() {
            Ok(())
        } else {
            Err(self)
        }
    }
}

impl Display for VerifierErrors {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        for err in &self.0 {
            writeln!(f, "- {}", err)?;
        }
        Ok(())
    }
}

/// Verify `func`.
pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
    func: &Function,
    fisa: FOI,
) -> VerifierResult<()> {
    let _tt = timing::verifier();
    let mut errors = VerifierErrors::default();
    let verifier = Verifier::new(func, fisa.into());
    let result = verifier.run(&mut errors);
    if errors.is_empty() {
        result.unwrap();
        Ok(())
    } else {
        Err(errors)
    }
}

/// Verify `func` after checking the integrity of associated context data structures `cfg` and
/// `domtree`.
pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
    func: &Function,
    cfg: &ControlFlowGraph,
    domtree: &DominatorTree,
    fisa: FOI,
    errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
    let _tt = timing::verifier();
    let verifier = Verifier::new(func, fisa.into());
    if cfg.is_valid() {
        verifier.cfg_integrity(cfg, errors)?;
    }
    if domtree.is_valid() {
        verifier.domtree_integrity(domtree, errors)?;
    }
    verifier.run(errors)
}

struct Verifier<'a> {
    func: &'a Function,
    expected_cfg: ControlFlowGraph,
    expected_domtree: DominatorTree,
    isa: Option<&'a dyn TargetIsa>,
}

impl<'a> Verifier<'a> {
    pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
        let expected_cfg = ControlFlowGraph::with_function(func);
        let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
        Self {
            func,
            expected_cfg,
            expected_domtree,
            isa: fisa.isa,
        }
    }

    /// Determine a contextual error string for an instruction.
    #[inline]
    fn context(&self, inst: Inst) -> String {
        self.func.dfg.display_inst(inst, self.isa).to_string()
    }

    // Check for:
    //  - cycles in the global value declarations.
    //  - use of 'vmctx' when no special parameter declares it.
    fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        let mut cycle_seen = false;
        let mut seen = SparseSet::new();

        'gvs: for gv in self.func.global_values.keys() {
            seen.clear();
            seen.insert(gv);

            let mut cur = gv;
            loop {
                match self.func.global_values[cur] {
                    ir::GlobalValueData::Load { base, .. }
                    | ir::GlobalValueData::IAddImm { base, .. } => {
                        if seen.insert(base).is_some() {
                            if !cycle_seen {
                                errors.report((
                                    gv,
                                    format!("global value cycle: {}", DisplayList(seen.as_slice())),
                                ));
                                // ensures we don't report the cycle multiple times
                                cycle_seen = true;
                            }
                            continue 'gvs;
                        }

                        cur = base;
                    }
                    _ => break,
                }
            }

            match self.func.global_values[gv] {
                ir::GlobalValueData::VMContext { .. } => {
                    if self
                        .func
                        .special_param(ir::ArgumentPurpose::VMContext)
                        .is_none()
                    {
                        errors.report((gv, format!("undeclared vmctx reference {}", gv)));
                    }
                }
                ir::GlobalValueData::IAddImm {
                    base, global_type, ..
                } => {
                    if !global_type.is_int() {
                        errors.report((
                            gv,
                            format!("iadd_imm global value with non-int type {}", global_type),
                        ));
                    } else if let Some(isa) = self.isa {
                        let base_type = self.func.global_values[base].global_type(isa);
                        if global_type != base_type {
                            errors.report((
                                gv,
                                format!(
                                    "iadd_imm type {} differs from operand type {}",
                                    global_type, base_type
                                ),
                            ));
                        }
                    }
                }
                ir::GlobalValueData::Load { base, .. } => {
                    if let Some(isa) = self.isa {
                        let base_type = self.func.global_values[base].global_type(isa);
                        let pointer_type = isa.pointer_type();
                        if base_type != pointer_type {
                            errors.report((
                                gv,
                                format!(
                                    "base {} has type {}, which is not the pointer type {}",
                                    base, base_type, pointer_type
                                ),
                            ));
                        }
                    }
                }
                _ => {}
            }
        }

        // Invalid global values shouldn't stop us from verifying the rest of the function
        Ok(())
    }

    fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        if let Some(isa) = self.isa {
            for (heap, heap_data) in &self.func.heaps {
                let base = heap_data.base;
                if !self.func.global_values.is_valid(base) {
                    return errors.nonfatal((heap, format!("invalid base global value {}", base)));
                }

                let pointer_type = isa.pointer_type();
                let base_type = self.func.global_values[base].global_type(isa);
                if base_type != pointer_type {
                    errors.report((
                        heap,
                        format!(
                            "heap base has type {}, which is not the pointer type {}",
                            base_type, pointer_type
                        ),
                    ));
                }

                if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style {
                    if !self.func.global_values.is_valid(bound_gv) {
                        return errors
                            .nonfatal((heap, format!("invalid bound global value {}", bound_gv)));
                    }

                    let index_type = heap_data.index_type;
                    let bound_type = self.func.global_values[bound_gv].global_type(isa);
                    if index_type != bound_type {
                        errors.report((
                            heap,
                            format!(
                                "heap index type {} differs from the type of its bound, {}",
                                index_type, bound_type
                            ),
                        ));
                    }
                }
            }
        }

        Ok(())
    }

    fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        if let Some(isa) = self.isa {
            for (table, table_data) in &self.func.tables {
                let base = table_data.base_gv;
                if !self.func.global_values.is_valid(base) {
                    return errors.nonfatal((table, format!("invalid base global value {}", base)));
                }

                let pointer_type = isa.pointer_type();
                let base_type = self.func.global_values[base].global_type(isa);
                if base_type != pointer_type {
                    errors.report((
                        table,
                        format!(
                            "table base has type {}, which is not the pointer type {}",
                            base_type, pointer_type
                        ),
                    ));
                }

                let bound_gv = table_data.bound_gv;
                if !self.func.global_values.is_valid(bound_gv) {
                    return errors
                        .nonfatal((table, format!("invalid bound global value {}", bound_gv)));
                }

                let index_type = table_data.index_type;
                let bound_type = self.func.global_values[bound_gv].global_type(isa);
                if index_type != bound_type {
                    errors.report((
                        table,
                        format!(
                            "table index type {} differs from the type of its bound, {}",
                            index_type, bound_type
                        ),
                    ));
                }
            }
        }

        Ok(())
    }

    fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        for (jt, jt_data) in &self.func.jump_tables {
            for &block in jt_data.iter() {
                self.verify_block(jt, block, errors)?;
            }
        }
        Ok(())
    }

    /// Check that the given block can be encoded as a BB, by checking that only
    /// branching instructions are ending the block.
    fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        match self.func.is_block_basic(block) {
            Ok(()) => Ok(()),
            Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
        }
    }

    fn block_integrity(
        &self,
        block: Block,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let is_terminator = self.func.dfg[inst].opcode().is_terminator();
        let is_last_inst = self.func.layout.last_inst(block) == Some(inst);

        if is_terminator && !is_last_inst {
            // Terminating instructions only occur at the end of blocks.
            return errors.fatal((
                inst,
                self.context(inst),
                format!(
                    "a terminator instruction was encountered before the end of {}",
                    block
                ),
            ));
        }
        if is_last_inst && !is_terminator {
            return errors.fatal((block, "block does not end in a terminator instruction"));
        }

        // Instructions belong to the correct block.
        let inst_block = self.func.layout.inst_block(inst);
        if inst_block != Some(block) {
            return errors.fatal((
                inst,
                self.context(inst),
                format!("should belong to {} not {:?}", block, inst_block),
            ));
        }

        // Parameters belong to the correct block.
        for &arg in self.func.dfg.block_params(block) {
            match self.func.dfg.value_def(arg) {
                ValueDef::Param(arg_block, _) => {
                    if block != arg_block {
                        return errors.fatal((arg, format!("does not belong to {}", block)));
                    }
                }
                _ => {
                    return errors.fatal((arg, "expected an argument, found a result"));
                }
            }
        }

        Ok(())
    }

    fn instruction_integrity(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let inst_data = &self.func.dfg[inst];
        let dfg = &self.func.dfg;

        // The instruction format matches the opcode
        if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
            return errors.fatal((
                inst,
                self.context(inst),
                "instruction opcode doesn't match instruction format",
            ));
        }

        let num_fixed_results = inst_data.opcode().constraints().num_fixed_results();
        // var_results is 0 if we aren't a call instruction
        let var_results = dfg
            .call_signature(inst)
            .map_or(0, |sig| dfg.signatures[sig].returns.len());
        let total_results = num_fixed_results + var_results;

        // All result values for multi-valued instructions are created
        let got_results = dfg.inst_results(inst).len();
        if got_results != total_results {
            return errors.fatal((
                inst,
                self.context(inst),
                format!(
                    "expected {} result values, found {}",
                    total_results, got_results,
                ),
            ));
        }

        self.verify_entity_references(inst, errors)
    }

    fn verify_entity_references(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        use crate::ir::instructions::InstructionData::*;

        for &arg in self.func.dfg.inst_args(inst) {
            self.verify_inst_arg(inst, arg, errors)?;

            // All used values must be attached to something.
            let original = self.func.dfg.resolve_aliases(arg);
            if !self.func.dfg.value_is_attached(original) {
                errors.report((
                    inst,
                    self.context(inst),
                    format!("argument {} -> {} is not attached", arg, original),
                ));
            }
        }

        for &res in self.func.dfg.inst_results(inst) {
            self.verify_inst_result(inst, res, errors)?;
        }

        match self.func.dfg[inst] {
            MultiAry { ref args, .. } => {
                self.verify_value_list(inst, args, errors)?;
            }
            Jump {
                destination,
                ref args,
                ..
            }
            | Branch {
                destination,
                ref args,
                ..
            }
            | BranchInt {
                destination,
                ref args,
                ..
            }
            | BranchFloat {
                destination,
                ref args,
                ..
            }
            | BranchIcmp {
                destination,
                ref args,
                ..
            } => {
                self.verify_block(inst, destination, errors)?;
                self.verify_value_list(inst, args, errors)?;
            }
            BranchTable {
                table, destination, ..
            } => {
                self.verify_block(inst, destination, errors)?;
                self.verify_jump_table(inst, table, errors)?;
            }
            BranchTableBase { table, .. }
            | BranchTableEntry { table, .. }
            | IndirectJump { table, .. } => {
                self.verify_jump_table(inst, table, errors)?;
            }
            Call {
                func_ref, ref args, ..
            } => {
                self.verify_func_ref(inst, func_ref, errors)?;
                self.verify_value_list(inst, args, errors)?;
            }
            CallIndirect {
                sig_ref, ref args, ..
            } => {
                self.verify_sig_ref(inst, sig_ref, errors)?;
                self.verify_value_list(inst, args, errors)?;
            }
            FuncAddr { func_ref, .. } => {
                self.verify_func_ref(inst, func_ref, errors)?;
            }
            StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
                self.verify_stack_slot(inst, stack_slot, errors)?;
            }
            UnaryGlobalValue { global_value, .. } => {
                self.verify_global_value(inst, global_value, errors)?;
            }
            HeapAddr { heap, .. } => {
                self.verify_heap(inst, heap, errors)?;
            }
            TableAddr { table, .. } => {
                self.verify_table(inst, table, errors)?;
            }
            RegSpill { dst, .. } => {
                self.verify_stack_slot(inst, dst, errors)?;
            }
            RegFill { src, .. } => {
                self.verify_stack_slot(inst, src, errors)?;
            }
            LoadComplex { ref args, .. } => {
                self.verify_value_list(inst, args, errors)?;
            }
            StoreComplex { ref args, .. } => {
                self.verify_value_list(inst, args, errors)?;
            }

            NullAry {
                opcode: Opcode::GetPinnedReg,
            }
            | Unary {
                opcode: Opcode::SetPinnedReg,
                ..
            } => {
                if let Some(isa) = &self.isa {
                    if !isa.flags().enable_pinned_reg() {
                        return errors.fatal((
                            inst,
                            self.context(inst),
                            "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
                        ));
                    }
                } else {
                    return errors.fatal((
                        inst,
                        self.context(inst),
                        "GetPinnedReg/SetPinnedReg need an ISA!",
                    ));
                }
            }
            Unary {
                opcode: Opcode::Bitcast,
                arg,
            } => {
                self.verify_bitcast(inst, arg, errors)?;
            }
            UnaryConst {
                opcode: Opcode::Vconst,
                constant_handle,
                ..
            } => {
                self.verify_constant_size(inst, constant_handle, errors)?;
            }

            // Exhaustive list so we can't forget to add new formats
            AtomicCas { .. }
            | AtomicRmw { .. }
            | LoadNoOffset { .. }
            | StoreNoOffset { .. }
            | Unary { .. }
            | UnaryConst { .. }
            | UnaryImm { .. }
            | UnaryIeee32 { .. }
            | UnaryIeee64 { .. }
            | UnaryBool { .. }
            | Binary { .. }
            | BinaryImm8 { .. }
            | BinaryImm64 { .. }
            | Ternary { .. }
            | TernaryImm8 { .. }
            | Shuffle { .. }
            | IntCompare { .. }
            | IntCompareImm { .. }
            | IntCond { .. }
            | FloatCompare { .. }
            | FloatCond { .. }
            | IntSelect { .. }
            | Load { .. }
            | Store { .. }
            | RegMove { .. }
            | CopySpecial { .. }
            | CopyToSsa { .. }
            | Trap { .. }
            | CondTrap { .. }
            | IntCondTrap { .. }
            | FloatCondTrap { .. }
            | NullAry { .. } => {}
        }

        Ok(())
    }

    fn verify_block(
        &self,
        loc: impl Into<AnyEntity>,
        e: Block,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
            return errors.fatal((loc, format!("invalid block reference {}", e)));
        }
        if let Some(entry_block) = self.func.layout.entry_block() {
            if e == entry_block {
                return errors.fatal((loc, format!("invalid reference to entry block {}", e)));
            }
        }
        Ok(())
    }

    fn verify_sig_ref(
        &self,
        inst: Inst,
        s: SigRef,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.dfg.signatures.is_valid(s) {
            errors.fatal((
                inst,
                self.context(inst),
                format!("invalid signature reference {}", s),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_func_ref(
        &self,
        inst: Inst,
        f: FuncRef,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.dfg.ext_funcs.is_valid(f) {
            errors.nonfatal((
                inst,
                self.context(inst),
                format!("invalid function reference {}", f),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_stack_slot(
        &self,
        inst: Inst,
        ss: StackSlot,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.stack_slots.is_valid(ss) {
            errors.nonfatal((
                inst,
                self.context(inst),
                format!("invalid stack slot {}", ss),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_global_value(
        &self,
        inst: Inst,
        gv: GlobalValue,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.global_values.is_valid(gv) {
            errors.nonfatal((
                inst,
                self.context(inst),
                format!("invalid global value {}", gv),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_heap(
        &self,
        inst: Inst,
        heap: ir::Heap,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.heaps.is_valid(heap) {
            errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap)))
        } else {
            Ok(())
        }
    }

    fn verify_table(
        &self,
        inst: Inst,
        table: ir::Table,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.tables.is_valid(table) {
            errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table)))
        } else {
            Ok(())
        }
    }

    fn verify_value_list(
        &self,
        inst: Inst,
        l: &ValueList,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !l.is_valid(&self.func.dfg.value_lists) {
            errors.nonfatal((
                inst,
                self.context(inst),
                format!("invalid value list reference {:?}", l),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_jump_table(
        &self,
        inst: Inst,
        j: JumpTable,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if !self.func.jump_tables.is_valid(j) {
            errors.nonfatal((
                inst,
                self.context(inst),
                format!("invalid jump table reference {}", j),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_value(
        &self,
        loc_inst: Inst,
        v: Value,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let dfg = &self.func.dfg;
        if !dfg.value_is_valid(v) {
            errors.nonfatal((
                loc_inst,
                self.context(loc_inst),
                format!("invalid value reference {}", v),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_inst_arg(
        &self,
        loc_inst: Inst,
        v: Value,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        self.verify_value(loc_inst, v, errors)?;

        let dfg = &self.func.dfg;
        let loc_block = self.func.layout.pp_block(loc_inst);
        let is_reachable = self.expected_domtree.is_reachable(loc_block);

        // SSA form
        match dfg.value_def(v) {
            ValueDef::Result(def_inst, _) => {
                // Value is defined by an instruction that exists.
                if !dfg.inst_is_valid(def_inst) {
                    return errors.fatal((
                        loc_inst,
                        self.context(loc_inst),
                        format!("{} is defined by invalid instruction {}", v, def_inst),
                    ));
                }
                // Defining instruction is inserted in a block.
                if self.func.layout.inst_block(def_inst) == None {
                    return errors.fatal((
                        loc_inst,
                        self.context(loc_inst),
                        format!("{} is defined by {} which has no block", v, def_inst),
                    ));
                }
                // Defining instruction dominates the instruction that uses the value.
                if is_reachable {
                    if !self
                        .expected_domtree
                        .dominates(def_inst, loc_inst, &self.func.layout)
                    {
                        return errors.fatal((
                            loc_inst,
                            self.context(loc_inst),
                            format!("uses value {} from non-dominating {}", v, def_inst),
                        ));
                    }
                    if def_inst == loc_inst {
                        return errors.fatal((
                            loc_inst,
                            self.context(loc_inst),
                            format!("uses value {} from itself", v),
                        ));
                    }
                }
            }
            ValueDef::Param(block, _) => {
                // Value is defined by an existing block.
                if !dfg.block_is_valid(block) {
                    return errors.fatal((
                        loc_inst,
                        self.context(loc_inst),
                        format!("{} is defined by invalid block {}", v, block),
                    ));
                }
                // Defining block is inserted in the layout
                if !self.func.layout.is_block_inserted(block) {
                    return errors.fatal((
                        loc_inst,
                        self.context(loc_inst),
                        format!("{} is defined by {} which is not in the layout", v, block),
                    ));
                }
                // The defining block dominates the instruction using this value.
                if is_reachable
                    && !self
                        .expected_domtree
                        .dominates(block, loc_inst, &self.func.layout)
                {
                    return errors.fatal((
                        loc_inst,
                        self.context(loc_inst),
                        format!("uses value arg from non-dominating {}", block),
                    ));
                }
            }
        }
        Ok(())
    }

    fn verify_inst_result(
        &self,
        loc_inst: Inst,
        v: Value,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        self.verify_value(loc_inst, v, errors)?;

        match self.func.dfg.value_def(v) {
            ValueDef::Result(def_inst, _) => {
                if def_inst != loc_inst {
                    errors.fatal((
                        loc_inst,
                        self.context(loc_inst),
                        format!("instruction result {} is not defined by the instruction", v),
                    ))
                } else {
                    Ok(())
                }
            }
            ValueDef::Param(_, _) => errors.fatal((
                loc_inst,
                self.context(loc_inst),
                format!("instruction result {} is not defined by the instruction", v),
            )),
        }
    }

    fn verify_bitcast(
        &self,
        inst: Inst,
        arg: Value,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let typ = self.func.dfg.ctrl_typevar(inst);
        let value_type = self.func.dfg.value_type(arg);

        if typ.lane_bits() < value_type.lane_bits() {
            errors.fatal((
                inst,
                format!(
                    "The bitcast argument {} doesn't fit in a type of {} bits",
                    arg,
                    typ.lane_bits()
                ),
            ))
        } else {
            Ok(())
        }
    }

    fn verify_constant_size(
        &self,
        inst: Inst,
        constant: Constant,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let type_size = self.func.dfg.ctrl_typevar(inst).bytes() as usize;
        let constant_size = self.func.dfg.constants.get(constant).len();
        if type_size != constant_size {
            errors.fatal((
                inst,
                format!(
                    "The instruction expects {} to have a size of {} bytes but it has {}",
                    constant, type_size, constant_size
                ),
            ))
        } else {
            Ok(())
        }
    }

    fn domtree_integrity(
        &self,
        domtree: &DominatorTree,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        // We consider two `DominatorTree`s to be equal if they return the same immediate
        // dominator for each block. Therefore the current domtree is valid if it matches the freshly
        // computed one.
        for block in self.func.layout.blocks() {
            let expected = self.expected_domtree.idom(block);
            let got = domtree.idom(block);
            if got != expected {
                return errors.fatal((
                    block,
                    format!(
                        "invalid domtree, expected idom({}) = {:?}, got {:?}",
                        block, expected, got
                    ),
                ));
            }
        }
        // We also verify if the postorder defined by `DominatorTree` is sane
        if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
            return errors.fatal((
                AnyEntity::Function,
                "incorrect number of Blocks in postorder traversal",
            ));
        }
        for (index, (&test_block, &true_block)) in domtree
            .cfg_postorder()
            .iter()
            .zip(self.expected_domtree.cfg_postorder().iter())
            .enumerate()
        {
            if test_block != true_block {
                return errors.fatal((
                    test_block,
                    format!(
                        "invalid domtree, postorder block number {} should be {}, got {}",
                        index, true_block, test_block
                    ),
                ));
            }
        }
        // We verify rpo_cmp on pairs of adjacent blocks in the postorder
        for (&prev_block, &next_block) in domtree.cfg_postorder().iter().adjacent_pairs() {
            if self
                .expected_domtree
                .rpo_cmp(prev_block, next_block, &self.func.layout)
                != Ordering::Greater
            {
                return errors.fatal((
                    next_block,
                    format!(
                        "invalid domtree, rpo_cmp does not says {} is greater than {}",
                        prev_block, next_block
                    ),
                ));
            }
        }
        Ok(())
    }

    fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        if let Some(block) = self.func.layout.entry_block() {
            let expected_types = &self.func.signature.params;
            let block_param_count = self.func.dfg.num_block_params(block);

            if block_param_count != expected_types.len() {
                return errors.fatal((
                    block,
                    format!(
                        "entry block parameters ({}) must match function signature ({})",
                        block_param_count,
                        expected_types.len()
                    ),
                ));
            }

            for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
                let arg_type = self.func.dfg.value_type(arg);
                if arg_type != expected_types[i].value_type {
                    errors.report((
                        block,
                        format!(
                            "entry block parameter {} expected to have type {}, got {}",
                            i, expected_types[i], arg_type
                        ),
                    ));
                }
            }
        }

        errors.as_result()
    }

    fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        let inst_data = &self.func.dfg[inst];
        let constraints = inst_data.opcode().constraints();

        let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
            // For polymorphic opcodes, determine the controlling type variable first.
            let ctrl_type = self.func.dfg.ctrl_typevar(inst);

            if !value_typeset.contains(ctrl_type) {
                errors.report((
                    inst,
                    self.context(inst),
                    format!("has an invalid controlling type {}", ctrl_type),
                ));
            }

            ctrl_type
        } else {
            // Non-polymorphic instructions don't check the controlling type variable, so `Option`
            // is unnecessary and we can just make it `INVALID`.
            types::INVALID
        };

        // Typechecking instructions is never fatal
        let _ = self.typecheck_results(inst, ctrl_type, errors);
        let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
        let _ = self.typecheck_variable_args(inst, errors);
        let _ = self.typecheck_return(inst, errors);
        let _ = self.typecheck_special(inst, ctrl_type, errors);

        // Misuses of copy_nop instructions are fatal
        self.typecheck_copy_nop(inst, errors)?;

        Ok(())
    }

    fn typecheck_results(
        &self,
        inst: Inst,
        ctrl_type: Type,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let mut i = 0;
        for &result in self.func.dfg.inst_results(inst) {
            let result_type = self.func.dfg.value_type(result);
            let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
            if let Some(expected_type) = expected_type {
                if result_type != expected_type {
                    errors.report((
                        inst,
                        self.context(inst),
                        format!(
                            "expected result {} ({}) to have type {}, found {}",
                            i, result, expected_type, result_type
                        ),
                    ));
                }
            } else {
                return errors.nonfatal((
                    inst,
                    self.context(inst),
                    "has more result values than expected",
                ));
            }
            i += 1;
        }

        // There aren't any more result types left.
        if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
            return errors.nonfatal((
                inst,
                self.context(inst),
                "has fewer result values than expected",
            ));
        }
        Ok(())
    }

    fn typecheck_fixed_args(
        &self,
        inst: Inst,
        ctrl_type: Type,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let constraints = self.func.dfg[inst].opcode().constraints();

        for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
            let arg_type = self.func.dfg.value_type(arg);
            match constraints.value_argument_constraint(i, ctrl_type) {
                ResolvedConstraint::Bound(expected_type) => {
                    if arg_type != expected_type {
                        errors.report((
                            inst,
                            self.context(inst),
                            format!(
                                "arg {} ({}) has type {}, expected {}",
                                i, arg, arg_type, expected_type
                            ),
                        ));
                    }
                }
                ResolvedConstraint::Free(type_set) => {
                    if !type_set.contains(arg_type) {
                        errors.report((
                            inst,
                            self.context(inst),
                            format!(
                                "arg {} ({}) with type {} failed to satisfy type set {:?}",
                                i, arg, arg_type, type_set
                            ),
                        ));
                    }
                }
            }
        }
        Ok(())
    }

    fn typecheck_variable_args(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        match self.func.dfg.analyze_branch(inst) {
            BranchInfo::SingleDest(block, _) => {
                let iter = self
                    .func
                    .dfg
                    .block_params(block)
                    .iter()
                    .map(|&v| self.func.dfg.value_type(v));
                self.typecheck_variable_args_iterator(inst, iter, errors)?;
            }
            BranchInfo::Table(table, block) => {
                if let Some(block) = block {
                    let arg_count = self.func.dfg.num_block_params(block);
                    if arg_count != 0 {
                        return errors.nonfatal((
                            inst,
                            self.context(inst),
                            format!(
                                "takes no arguments, but had target {} with {} arguments",
                                block, arg_count,
                            ),
                        ));
                    }
                }
                for block in self.func.jump_tables[table].iter() {
                    let arg_count = self.func.dfg.num_block_params(*block);
                    if arg_count != 0 {
                        return errors.nonfatal((
                            inst,
                            self.context(inst),
                            format!(
                                "takes no arguments, but had target {} with {} arguments",
                                block, arg_count,
                            ),
                        ));
                    }
                }
            }
            BranchInfo::NotABranch => {}
        }

        match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
            CallInfo::Direct(func_ref, _) => {
                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
                let arg_types = self.func.dfg.signatures[sig_ref]
                    .params
                    .iter()
                    .map(|a| a.value_type);
                self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
                self.check_outgoing_args(inst, sig_ref, errors)?;
            }
            CallInfo::Indirect(sig_ref, _) => {
                let arg_types = self.func.dfg.signatures[sig_ref]
                    .params
                    .iter()
                    .map(|a| a.value_type);
                self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
                self.check_outgoing_args(inst, sig_ref, errors)?;
            }
            CallInfo::NotACall => {}
        }
        Ok(())
    }

    fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
        &self,
        inst: Inst,
        iter: I,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let variable_args = self.func.dfg.inst_variable_args(inst);
        let mut i = 0;

        for expected_type in iter {
            if i >= variable_args.len() {
                // Result count mismatch handled below, we want the full argument count first though
                i += 1;
                continue;
            }
            let arg = variable_args[i];
            let arg_type = self.func.dfg.value_type(arg);
            if expected_type != arg_type {
                errors.report((
                    inst,
                    self.context(inst),
                    format!(
                        "arg {} ({}) has type {}, expected {}",
                        i, variable_args[i], arg_type, expected_type
                    ),
                ));
            }
            i += 1;
        }
        if i != variable_args.len() {
            return errors.nonfatal((
                inst,
                self.context(inst),
                format!(
                    "mismatched argument count for `{}`: got {}, expected {}",
                    self.func.dfg.display_inst(inst, None),
                    variable_args.len(),
                    i,
                ),
            ));
        }
        Ok(())
    }

    /// Check the locations assigned to outgoing call arguments.
    ///
    /// When a signature has been legalized, all values passed as outgoing arguments on the stack
    /// must be assigned to a matching `OutgoingArg` stack slot.
    fn check_outgoing_args(
        &self,
        inst: Inst,
        sig_ref: SigRef,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let sig = &self.func.dfg.signatures[sig_ref];

        let args = self.func.dfg.inst_variable_args(inst);
        let expected_args = &sig.params[..];

        for (&arg, &abi) in args.iter().zip(expected_args) {
            // Value types have already been checked by `typecheck_variable_args_iterator()`.
            if let ArgumentLoc::Stack(offset) = abi.location {
                let arg_loc = self.func.locations[arg];
                if let ValueLoc::Stack(ss) = arg_loc {
                    // Argument value is assigned to a stack slot as expected.
                    self.verify_stack_slot(inst, ss, errors)?;
                    let slot = &self.func.stack_slots[ss];
                    if slot.kind != StackSlotKind::OutgoingArg {
                        return errors.fatal((
                            inst,
                            self.context(inst),
                            format!(
                                "Outgoing stack argument {} in wrong stack slot: {} = {}",
                                arg, ss, slot,
                            ),
                        ));
                    }
                    if slot.offset != Some(offset) {
                        return errors.fatal((
                            inst,
                            self.context(inst),
                            format!(
                                "Outgoing stack argument {} should have offset {}: {} = {}",
                                arg, offset, ss, slot,
                            ),
                        ));
                    }
                    if abi.purpose == ArgumentPurpose::StructArgument(slot.size) {
                    } else if slot.size != abi.value_type.bytes() {
                        return errors.fatal((
                            inst,
                            self.context(inst),
                            format!(
                                "Outgoing stack argument {} wrong size for {}: {} = {}",
                                arg, abi.value_type, ss, slot,
                            ),
                        ));
                    }
                } else {
                    let reginfo = self.isa.map(|i| i.register_info());
                    return errors.fatal((
                        inst,
                        self.context(inst),
                        format!(
                            "Outgoing stack argument {} in wrong location: {}",
                            arg,
                            arg_loc.display(reginfo.as_ref())
                        ),
                    ));
                }
            }
        }
        Ok(())
    }

    fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        if self.func.dfg[inst].opcode().is_return() {
            let args = self.func.dfg.inst_variable_args(inst);
            let expected_types = &self.func.signature.returns;
            if args.len() != expected_types.len() {
                return errors.nonfatal((
                    inst,
                    self.context(inst),
                    "arguments of return must match function signature",
                ));
            }
            for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
                let arg_type = self.func.dfg.value_type(arg);
                if arg_type != expected_type.value_type {
                    errors.report((
                        inst,
                        self.context(inst),
                        format!(
                            "arg {} ({}) has type {}, must match function signature of {}",
                            i, arg, arg_type, expected_type
                        ),
                    ));
                }
            }
        }
        Ok(())
    }

    // Check special-purpose type constraints that can't be expressed in the normal opcode
    // constraints.
    fn typecheck_special(
        &self,
        inst: Inst,
        ctrl_type: Type,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        match self.func.dfg[inst] {
            ir::InstructionData::Unary { opcode, arg } => {
                let arg_type = self.func.dfg.value_type(arg);
                match opcode {
                    Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
                        if arg_type.lane_count() != ctrl_type.lane_count() {
                            return errors.nonfatal((
                                inst,
                                self.context(inst),
                                format!(
                                    "input {} and output {} must have same number of lanes",
                                    arg_type, ctrl_type,
                                ),
                            ));
                        }
                        if arg_type.lane_bits() >= ctrl_type.lane_bits() {
                            return errors.nonfatal((
                                inst,
                                self.context(inst),
                                format!(
                                    "input {} must be smaller than output {}",
                                    arg_type, ctrl_type,
                                ),
                            ));
                        }
                    }
                    Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
                        if arg_type.lane_count() != ctrl_type.lane_count() {
                            return errors.nonfatal((
                                inst,
                                self.context(inst),
                                format!(
                                    "input {} and output {} must have same number of lanes",
                                    arg_type, ctrl_type,
                                ),
                            ));
                        }
                        if arg_type.lane_bits() <= ctrl_type.lane_bits() {
                            return errors.nonfatal((
                                inst,
                                self.context(inst),
                                format!(
                                    "input {} must be larger than output {}",
                                    arg_type, ctrl_type,
                                ),
                            ));
                        }
                    }
                    _ => {}
                }
            }
            ir::InstructionData::HeapAddr { heap, arg, .. } => {
                let index_type = self.func.dfg.value_type(arg);
                let heap_index_type = self.func.heaps[heap].index_type;
                if index_type != heap_index_type {
                    return errors.nonfatal((
                        inst,
                        self.context(inst),
                        format!(
                            "index type {} differs from heap index type {}",
                            index_type, heap_index_type,
                        ),
                    ));
                }
            }
            ir::InstructionData::TableAddr { table, arg, .. } => {
                let index_type = self.func.dfg.value_type(arg);
                let table_index_type = self.func.tables[table].index_type;
                if index_type != table_index_type {
                    return errors.nonfatal((
                        inst,
                        self.context(inst),
                        format!(
                            "index type {} differs from table index type {}",
                            index_type, table_index_type,
                        ),
                    ));
                }
            }
            ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
                if let Some(isa) = self.isa {
                    let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
                    let global_type = self.func.global_values[global_value].global_type(isa);
                    if inst_type != global_type {
                        return errors.nonfatal((
                            inst, self.context(inst),
                            format!(
                                "global_value instruction with type {} references global value with type {}",
                                inst_type, global_type
                            )),
                        );
                    }
                }
            }
            _ => {}
        }
        Ok(())
    }

    fn typecheck_copy_nop(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if let InstructionData::Unary {
            opcode: Opcode::CopyNop,
            arg,
        } = self.func.dfg[inst]
        {
            let dst_vals = self.func.dfg.inst_results(inst);
            if dst_vals.len() != 1 {
                return errors.fatal((
                    inst,
                    self.context(inst),
                    "copy_nop must produce exactly one result",
                ));
            }
            let dst_val = dst_vals[0];
            if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) {
                return errors.fatal((
                    inst,
                    self.context(inst),
                    "copy_nop src and dst types must be the same",
                ));
            }
            let src_loc = self.func.locations[arg];
            let dst_loc = self.func.locations[dst_val];
            let locs_ok = match (src_loc, dst_loc) {
                (ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot,
                _ => false,
            };
            if !locs_ok {
                return errors.fatal((
                    inst,
                    self.context(inst),
                    format!(
                        "copy_nop must refer to identical stack slots, but found {:?} vs {:?}",
                        src_loc, dst_loc,
                    ),
                ));
            }
        }
        Ok(())
    }

    fn cfg_integrity(
        &self,
        cfg: &ControlFlowGraph,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let mut expected_succs = BTreeSet::<Block>::new();
        let mut got_succs = BTreeSet::<Block>::new();
        let mut expected_preds = BTreeSet::<Inst>::new();
        let mut got_preds = BTreeSet::<Inst>::new();

        for block in self.func.layout.blocks() {
            expected_succs.extend(self.expected_cfg.succ_iter(block));
            got_succs.extend(cfg.succ_iter(block));

            let missing_succs: Vec<Block> =
                expected_succs.difference(&got_succs).cloned().collect();
            if !missing_succs.is_empty() {
                errors.report((
                    block,
                    format!("cfg lacked the following successor(s) {:?}", missing_succs),
                ));
                continue;
            }

            let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
            if !excess_succs.is_empty() {
                errors.report((
                    block,
                    format!("cfg had unexpected successor(s) {:?}", excess_succs),
                ));
                continue;
            }

            expected_preds.extend(
                self.expected_cfg
                    .pred_iter(block)
                    .map(|BlockPredecessor { inst, .. }| inst),
            );
            got_preds.extend(
                cfg.pred_iter(block)
                    .map(|BlockPredecessor { inst, .. }| inst),
            );

            let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
            if !missing_preds.is_empty() {
                errors.report((
                    block,
                    format!(
                        "cfg lacked the following predecessor(s) {:?}",
                        missing_preds
                    ),
                ));
                continue;
            }

            let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
            if !excess_preds.is_empty() {
                errors.report((
                    block,
                    format!("cfg had unexpected predecessor(s) {:?}", excess_preds),
                ));
                continue;
            }

            expected_succs.clear();
            got_succs.clear();
            expected_preds.clear();
            got_preds.clear();
        }
        errors.as_result()
    }

    /// If the verifier has been set up with an ISA, make sure that the recorded encoding for the
    /// instruction (if any) matches how the ISA would encode it.
    fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        // When the encodings table is empty, we don't require any instructions to be encoded.
        //
        // Once some instructions are encoded, we require all side-effecting instructions to have a
        // legal encoding.
        if self.func.encodings.is_empty() {
            return Ok(());
        }

        let isa = match self.isa {
            Some(isa) => isa,
            None => return Ok(()),
        };

        let encoding = self.func.encodings[inst];
        if encoding.is_legal() {
            if self.func.dfg[inst].opcode().is_ghost() {
                return errors.nonfatal((
                    inst,
                    self.context(inst),
                    format!(
                        "Ghost instruction has an encoding: {}",
                        isa.encoding_info().display(encoding),
                    ),
                ));
            }

            let mut encodings = isa
                .legal_encodings(
                    &self.func,
                    &self.func.dfg[inst],
                    self.func.dfg.ctrl_typevar(inst),
                )
                .peekable();

            if encodings.peek().is_none() {
                return errors.nonfatal((
                    inst,
                    self.context(inst),
                    format!(
                        "Instruction failed to re-encode {}",
                        isa.encoding_info().display(encoding),
                    ),
                ));
            }

            let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);

            if !has_valid_encoding {
                let mut possible_encodings = String::new();
                let mut multiple_encodings = false;

                for enc in isa.legal_encodings(
                    &self.func,
                    &self.func.dfg[inst],
                    self.func.dfg.ctrl_typevar(inst),
                ) {
                    if !possible_encodings.is_empty() {
                        possible_encodings.push_str(", ");
                        multiple_encodings = true;
                    }
                    possible_encodings
                        .write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
                        .unwrap();
                }

                return errors.nonfatal((
                    inst,
                    self.context(inst),
                    format!(
                        "encoding {} should be {}{}",
                        isa.encoding_info().display(encoding),
                        if multiple_encodings { "one of: " } else { "" },
                        possible_encodings,
                    ),
                ));
            }
            return Ok(());
        }

        // Instruction is not encoded, so it is a ghost instruction.
        // Instructions with side effects are not allowed to be ghost instructions.
        let opcode = self.func.dfg[inst].opcode();

        // The `fallthrough`, `fallthrough_return`, and `safepoint` instructions are not required
        // to have an encoding.
        if opcode == Opcode::Fallthrough
            || opcode == Opcode::FallthroughReturn
            || opcode == Opcode::Safepoint
        {
            return Ok(());
        }

        // Check if this opcode must be encoded.
        let mut needs_enc = None;
        if opcode.is_branch() {
            needs_enc = Some("Branch");
        } else if opcode.is_call() {
            needs_enc = Some("Call");
        } else if opcode.is_return() {
            needs_enc = Some("Return");
        } else if opcode.can_store() {
            needs_enc = Some("Store");
        } else if opcode.can_trap() {
            needs_enc = Some("Trapping instruction");
        } else if opcode.other_side_effects() {
            needs_enc = Some("Instruction with side effects");
        }

        if let Some(text) = needs_enc {
            // This instruction needs an encoding, so generate an error.
            // Provide the ISA default encoding as a hint.
            match self.func.encode(inst, isa) {
                Ok(enc) => {
                    return errors.nonfatal((
                        inst,
                        self.context(inst),
                        format!(
                            "{} must have an encoding (e.g., {})))",
                            text,
                            isa.encoding_info().display(enc),
                        ),
                    ));
                }
                Err(_) => {
                    return errors.nonfatal((
                        inst,
                        self.context(inst),
                        format!("{} must have an encoding", text),
                    ))
                }
            }
        }

        Ok(())
    }

    fn immediate_constraints(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        let inst_data = &self.func.dfg[inst];

        match *inst_data {
            ir::InstructionData::Store { flags, .. }
            | ir::InstructionData::StoreComplex { flags, .. } => {
                if flags.readonly() {
                    errors.fatal((
                        inst,
                        self.context(inst),
                        "A store instruction cannot have the `readonly` MemFlag",
                    ))
                } else {
                    Ok(())
                }
            }
            ir::InstructionData::BinaryImm8 {
                opcode: ir::instructions::Opcode::Extractlane,
                imm: lane,
                arg,
                ..
            }
            | ir::InstructionData::TernaryImm8 {
                opcode: ir::instructions::Opcode::Insertlane,
                imm: lane,
                args: [arg, _],
                ..
            } => {
                // We must be specific about the opcodes above because other instructions are using
                // the same formats.
                let ty = self.func.dfg.value_type(arg);
                if u16::from(lane) >= ty.lane_count() {
                    errors.fatal((
                        inst,
                        self.context(inst),
                        format!("The lane {} does not index into the type {}", lane, ty,),
                    ))
                } else {
                    Ok(())
                }
            }
            _ => Ok(()),
        }
    }

    fn verify_safepoint_unused(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        if let Some(isa) = self.isa {
            if !isa.flags().enable_safepoints() && self.func.dfg[inst].opcode() == Opcode::Safepoint
            {
                return errors.fatal((
                    inst,
                    self.context(inst),
                    "safepoint instruction cannot be used when it is not enabled.",
                ));
            }
        }
        Ok(())
    }

    fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        self.func
            .signature
            .params
            .iter()
            .enumerate()
            .filter(|(_, &param)| param.value_type == types::INVALID)
            .for_each(|(i, _)| {
                errors.report((
                    AnyEntity::Function,
                    format!("Parameter at position {} has an invalid type", i),
                ));
            });

        self.func
            .signature
            .returns
            .iter()
            .enumerate()
            .filter(|(_, &ret)| ret.value_type == types::INVALID)
            .for_each(|(i, _)| {
                errors.report((
                    AnyEntity::Function,
                    format!("Return value at position {} has an invalid type", i),
                ))
            });

        self.func
            .signature
            .returns
            .iter()
            .enumerate()
            .for_each(|(i, ret)| {
                if let ArgumentPurpose::StructArgument(_) = ret.purpose {
                    errors.report((
                        AnyEntity::Function,
                        format!("Return value at position {} can't be an struct argument", i),
                    ))
                }
            });

        if errors.has_error() {
            Err(())
        } else {
            Ok(())
        }
    }

    pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        self.verify_global_values(errors)?;
        self.verify_heaps(errors)?;
        self.verify_tables(errors)?;
        self.verify_jump_tables(errors)?;
        self.typecheck_entry_block_params(errors)?;
        self.typecheck_function_signature(errors)?;

        for block in self.func.layout.blocks() {
            if self.func.layout.first_inst(block).is_none() {
                return errors.fatal((block, format!("{} cannot be empty", block)));
            }
            for inst in self.func.layout.block_insts(block) {
                self.block_integrity(block, inst, errors)?;
                self.instruction_integrity(inst, errors)?;
                self.verify_safepoint_unused(inst, errors)?;
                self.typecheck(inst, errors)?;
                self.verify_encoding(inst, errors)?;
                self.immediate_constraints(inst, errors)?;
            }

            self.encodable_as_bb(block, errors)?;
        }

        verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;

        if !errors.is_empty() {
            debug!(
                "Found verifier errors in function:\n{}",
                pretty_verifier_error(self.func, None, None, errors.clone())
            );
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::{Verifier, VerifierError, VerifierErrors};
    use crate::entity::EntityList;
    use crate::ir::instructions::{InstructionData, Opcode};
    use crate::ir::{types, AbiParam, Function};
    use crate::settings;

    macro_rules! assert_err_with_msg {
        ($e:expr, $msg:expr) => {
            match $e.0.get(0) {
                None => panic!("Expected an error"),
                Some(&VerifierError { ref message, .. }) => {
                    if !message.contains($msg) {
                        #[cfg(feature = "std")]
                        panic!(format!(
                            "'{}' did not contain the substring '{}'",
                            message, $msg
                        ));
                        #[cfg(not(feature = "std"))]
                        panic!("error message did not contain the expected substring");
                    }
                }
            }
        };
    }

    #[test]
    fn empty() {
        let func = Function::new();
        let flags = &settings::Flags::new(settings::builder());
        let verifier = Verifier::new(&func, flags.into());
        let mut errors = VerifierErrors::default();

        assert_eq!(verifier.run(&mut errors), Ok(()));
        assert!(errors.0.is_empty());
    }

    #[test]
    fn bad_instruction_format() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        func.layout.append_block(block0);
        let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
            opcode: Opcode::F32const,
            imm: 0.into(),
        });
        func.layout.append_inst(nullary_with_bad_opcode, block0);
        func.layout.append_inst(
            func.dfg.make_inst(InstructionData::Jump {
                opcode: Opcode::Jump,
                destination: block0,
                args: EntityList::default(),
            }),
            block0,
        );
        let flags = &settings::Flags::new(settings::builder());
        let verifier = Verifier::new(&func, flags.into());
        let mut errors = VerifierErrors::default();

        let _ = verifier.run(&mut errors);

        assert_err_with_msg!(errors, "instruction format");
    }

    #[test]
    fn test_function_invalid_param() {
        let mut func = Function::new();
        func.signature.params.push(AbiParam::new(types::INVALID));

        let mut errors = VerifierErrors::default();
        let flags = &settings::Flags::new(settings::builder());
        let verifier = Verifier::new(&func, flags.into());

        let _ = verifier.typecheck_function_signature(&mut errors);
        assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
    }

    #[test]
    fn test_function_invalid_return_value() {
        let mut func = Function::new();
        func.signature.returns.push(AbiParam::new(types::INVALID));

        let mut errors = VerifierErrors::default();
        let flags = &settings::Flags::new(settings::builder());
        let verifier = Verifier::new(&func, flags.into());

        let _ = verifier.typecheck_function_signature(&mut errors);
        assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
    }

    #[test]
    fn test_printing_contextual_errors() {
        // Build function.
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        func.layout.append_block(block0);

        // Build instruction: v0, v1 = iconst 42
        let inst = func.dfg.make_inst(InstructionData::UnaryImm {
            opcode: Opcode::Iconst,
            imm: 42.into(),
        });
        func.dfg.append_result(inst, types::I32);
        func.dfg.append_result(inst, types::I32);
        func.layout.append_inst(inst, block0);

        // Setup verifier.
        let mut errors = VerifierErrors::default();
        let flags = &settings::Flags::new(settings::builder());
        let verifier = Verifier::new(&func, flags.into());

        // Now the error message, when printed, should contain the instruction sequence causing the
        // error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0)
        let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
        assert_eq!(
            format!("{}", errors.0[0]),
            "inst0 (v0, v1 = iconst.i32 42): has more result values than expected"
        )
    }

    #[test]
    fn test_empty_block() {
        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        func.layout.append_block(block0);

        let flags = &settings::Flags::new(settings::builder());
        let verifier = Verifier::new(&func, flags.into());
        let mut errors = VerifierErrors::default();
        let _ = verifier.run(&mut errors);

        assert_err_with_msg!(errors, "block0 cannot be empty");
    }
}