1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
//! This module implements a late-stage redundant-reload remover, which runs after registers have
//! been allocated and stack slots have been given specific offsets.
use crate::cursor::{Cursor, CursorPosition, EncCursor, FuncCursor};
use crate::entity::EntitySet;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::dfg::DataFlowGraph;
use crate::ir::instructions::BranchInfo;
use crate::ir::stackslot::{StackSlotKind, StackSlots};
use crate::ir::{
Block, Function, Inst, InstBuilder, InstructionData, Opcode, StackSlotData, Type, Value,
ValueLoc,
};
use crate::isa::{RegInfo, RegUnit, TargetIsa};
use crate::regalloc::RegDiversions;
use alloc::vec::Vec;
use core::convert::TryInto;
use cranelift_entity::{PrimaryMap, SecondaryMap};
// =============================================================================================
// A description of the redundant-fill-removal algorithm
//
//
// The algorithm works forwards through each Block. It carries along and updates a table,
// AvailEnv, with which it tracks registers that are known to have the same value as some stack
// slot. The actions on encountering an instruction depend on the instruction, as follows:
//
// ss1 = spill r0: update the AvailEnv so as to note that slot `ss1` and register `r0`
// have the same value.
//
// r1 = fill ss0: look in the AvailEnv. If it tells us that register `r1` and slot `ss0`
// have the same value, then delete the instruction by converting it to a
// `fill_nop`.
//
// If it tells us that some other register `r2` has the same value as
// slot `ss0`, convert the instruction into a copy from `r2` to `r1`.
//
// any other insn: remove from the AvailEnv, any bindings associated with registers
// written by this instruction, since they will be invalidated by it.
//
// Tracking the effects of `copy` instructions in AvailEnv for the case when both source and
// destination are registers does not cause any more fills to be removed or converted to copies.
// It's not clear why.
//
// There are various other instruction-handling cases in `visit_inst`, which are documented
// in-line, and do not change the core algorithm, so are not described here.
//
// The registers tracked by AvailEnv are the post-diversion registers that are really used by the
// code; they are not the pre-diversion names associated with each SSA `Value`. The second
// `fill` case above opportunistically copies values from registers that may have been diversion
// targets in some predecessor block, and so are no longer associated with any specific SSA-level
// name at the point the copy is made. Hence those copies (from `r2` to `r1`) cannot be done
// with an ordinary `copy` instruction. Instead they have to be done using a new `copy_to_ssa`
// instruction, which copies from an arbitrary register to a register-resident `Value` (that is,
// "back to" SSA-world).
//
// That completes the description of the core algorithm.
//
// In the case where a block `A` jumps to `B` and `A` is the only predecessor of `B`, the
// AvailEnv at the end of `A` will still be valid at the entry to `B`. In such a case, we can
// profitably transform `B` using the AvailEnv "inherited" from `A`. In order to take full
// advantage of this, this module partitions the function's CFG into tree-shaped groups of
// blocks, and processes each tree as described above. So the AvailEnv is only initialised to
// empty at the start of blocks that form the root of each tree; that is, for blocks which have
// two or more predecessors.
// =============================================================================================
// Top level algorithm structure
//
// The overall algorithm, for a function, starts like this:
//
// * (once per function): finds Blocks that have two or more predecessors, since they will be the
// roots of Block trees. Also, the entry node for the function is considered to be a root.
//
// It then continues with a loop that first finds a tree of Blocks ("discovery") and then removes
// redundant fills as described above ("processing"):
//
// * (discovery; once per tree): for each root, performs a depth first search to find all the Blocks
// in the tree, guided by RedundantReloadRemover::discovery_stack.
//
// * (processing; once per tree): the just-discovered tree is then processed as described above,
// guided by RedundantReloadRemover::processing_stack.
//
// In this way, all Blocks reachable from the function's entry point are eventually processed. Note
// that each tree is processed as soon as it has been discovered, so the algorithm never creates a
// list of trees for the function.
//
// The running state is stored in `RedundantReloadRemover`. This is allocated once and can be
// reused for multiple functions so as to minimise heap turnover. The fields are, roughly:
//
// num_regunits -- constant for the whole function; used by the tree processing phase
// num_preds_per_block -- constant for the whole function; used by the tree discovery process
//
// discovery_stack -- used to guide the tree discovery process
// nodes_in_tree -- the discovered nodes are recorded here
//
// processing_stack -- used to guide the tree processing process
// nodes_already_visited -- used to ensure the tree processing logic terminates in the case
// where a tree has a branch back to its root node.
//
// There is further documentation in line below, as appropriate.
// =============================================================================================
// A side note on register choice heuristics
// The core algorithm opportunistically replaces fill instructions when it knows of a register
// that already holds the required value. How effective this is largely depends on how long
// reloaded values happen to stay alive before the relevant register is overwritten. And that
// depends on the register allocator's register choice heuristics. The worst case is, when the
// register allocator reuses registers as soon as possible after they become free. Unfortunately
// that was indeed the selection scheme, prior to development of this pass.
//
// As part of this work, the register selection scheme has been changed as follows: for registers
// written by any instruction other than a fill, use the lowest numbered available register. But
// for registers written by a fill instruction, use the highest numbered available register. The
// aim is to try and keep reload- and non-reload registers disjoint to the extent possible.
// Several other schemes were tried, but this one is simple and can be worth an extra 2% of
// performance in some cases.
//
// The relevant change is more or less a one-line change in the solver.
// =============================================================================================
// Data structures used for discovery of trees
// `ZeroOneOrMany` is used to record the number of predecessors a Block block has. The `Zero` case
// is included so as to cleanly handle the case where the incoming graph has unreachable Blocks.
#[derive(Clone, PartialEq)]
enum ZeroOneOrMany {
Zero,
One,
Many,
}
// =============================================================================================
// Data structures used for processing of trees
// `SlotInfo` describes a spill slot in the obvious way. Note that it doesn't indicate which
// register(s) are currently associated with the slot. That job is done by `AvailEnv` instead.
//
// In the CL framework, stack slots are partitioned into disjoint sets, one for each
// `StackSlotKind`. The offset and size only give a unique identity within any particular
// `StackSlotKind`. So, to uniquely identify a stack slot, all three fields are necessary.
#[derive(Clone, Copy)]
struct SlotInfo {
kind: StackSlotKind,
offset: i32,
size: u32,
}
// `AvailEnv` maps each possible register to a stack slot that holds the same value. The index
// space of `AvailEnv::map` is exactly the set of registers available on the current target. If
// (as is mostly the case) a register is not known to have the same value as a stack slot, then
// its entry is `None` rather than `Some(..)`.
//
// Invariants for AvailEnv:
//
// AvailEnv may have multiple different registers bound to the same stack slot -- that is, `(kind,
// offset, size)` triple. That's OK, and reflects the reality that those two registers contain
// the same value. This could happen, for example, in the case
//
// ss1 = spill r0
// ..
// r2 = fill ss1
//
// Then both `r0` and `r2` will have the same value as `ss1`, provided that ".." doesn't write to
// `r1`.
//
// To say that two different registers may be bound to the same stack slot is the same as saying
// that it is allowed to have two different entries in AvailEnv with the same `(kind, offset,
// size)` triple. What is *not* allowed is to have partial overlaps. That is, if two SlotInfos
// have the same `kind` field and have `offset` and `size` fields that overlap, then their
// `offset` and `size` fields must be identical. This is so as to make the algorithm safe against
// situations where, for example, a 64 bit register is spilled, but then only the bottom 32 bits
// are reloaded from the slot.
//
// Although in such a case it seems likely that the Cranelift IR would be ill-typed, and so this
// case could probably not occur in practice.
#[derive(Clone)]
struct AvailEnv {
map: Vec<Option<SlotInfo>>,
}
// `ProcessingStackElem` combines AvailEnv with contextual information needed to "navigate" within
// a Block.
//
// A ProcessingStackElem conceptually has the lifetime of exactly one Block: once the current Block is
// completed, the ProcessingStackElem will be abandoned. In practice the top level state,
// RedundantReloadRemover, caches them, so as to avoid heap turnover.
//
// Note that ProcessingStackElem must contain a CursorPosition. The CursorPosition, which
// indicates where we are in the current Block, cannot be implicitly maintained by looping over all
// the instructions in a Block in turn, because we may choose to suspend processing the current Block
// at a side exit, continue by processing the subtree reached via the side exit, and only later
// resume the current Block.
struct ProcessingStackElem {
/// Indicates the AvailEnv at the current point in the Block.
avail_env: AvailEnv,
/// Shows where we currently are inside the Block.
cursor: CursorPosition,
/// Indicates the currently active register diversions at the current point.
diversions: RegDiversions,
}
// =============================================================================================
// The top level data structure
// `RedundantReloadRemover` contains data structures for the two passes: discovery of tree shaped
// regions, and processing of them. These are allocated once and stay alive for the entire
// function, even though they are cleared out for each new tree shaped region. It also caches
// `num_regunits` and `num_preds_per_block`, which are computed at the start of each function and
// then remain constant.
/// The redundant reload remover's state.
pub struct RedundantReloadRemover {
/// The total number of RegUnits available on this architecture. This is unknown when the
/// RedundantReloadRemover is created. It becomes known at the beginning of processing of a
/// function.
num_regunits: Option<u16>,
/// This stores, for each Block, a characterisation of the number of predecessors it has.
num_preds_per_block: PrimaryMap<Block, ZeroOneOrMany>,
/// The stack used for the first phase (discovery). There is one element on the discovery
/// stack for each currently unexplored Block in the tree being searched.
discovery_stack: Vec<Block>,
/// The nodes in the discovered tree are inserted here.
nodes_in_tree: EntitySet<Block>,
/// The stack used during the second phase (transformation). There is one element on the
/// processing stack for each currently-open node in the tree being transformed.
processing_stack: Vec<ProcessingStackElem>,
/// Used in the second phase to avoid visiting nodes more than once.
nodes_already_visited: EntitySet<Block>,
}
// =============================================================================================
// Miscellaneous small helper functions
// Is this a kind of stack slot that is safe to track in AvailEnv? This is probably overly
// conservative, but tracking only the SpillSlot and IncomingArgument kinds catches almost all
// available redundancy in practice.
fn is_slot_kind_tracked(kind: StackSlotKind) -> bool {
match kind {
StackSlotKind::SpillSlot | StackSlotKind::IncomingArg => true,
_ => false,
}
}
// Find out if the range `[offset, +size)` overlaps with the range in `si`.
fn overlaps(si: &SlotInfo, offset: i32, size: u32) -> bool {
let a_offset = si.offset as i64;
let a_size = si.size as i64;
let b_offset = offset as i64;
let b_size = size as i64;
let no_overlap = a_offset + a_size <= b_offset || b_offset + b_size <= a_offset;
!no_overlap
}
// Find, in `reginfo`, the register bank that `reg` lives in, and return the lower limit and size
// of the bank. This is so the caller can conveniently iterate over all RegUnits in the bank that
// `reg` lives in.
fn find_bank_limits(reginfo: &RegInfo, reg: RegUnit) -> (RegUnit, u16) {
if let Some(bank) = reginfo.bank_containing_regunit(reg) {
return (bank.first_unit, bank.units);
}
// We should never get here, since `reg` must come from *some* RegBank.
panic!("find_regclass_limits: reg not found");
}
// Returns the register that `v` is allocated to. Assumes that `v` actually resides in a
// register.
fn reg_of_value(locations: &SecondaryMap<Value, ValueLoc>, v: Value) -> RegUnit {
match locations[v] {
ValueLoc::Reg(ru) => ru,
_ => panic!("reg_of_value: value isn't in a reg"),
}
}
// Returns the stack slot that `v` is allocated to. Assumes that `v` actually resides in a stack
// slot.
fn slot_of_value<'s>(
locations: &SecondaryMap<Value, ValueLoc>,
stack_slots: &'s StackSlots,
v: Value,
) -> &'s StackSlotData {
match locations[v] {
ValueLoc::Stack(slot) => &stack_slots[slot],
_ => panic!("slot_of_value: value isn't in a stack slot"),
}
}
// =============================================================================================
// Top level: discovery of tree shaped regions
impl RedundantReloadRemover {
// A helper for `add_nodes_to_tree` below.
fn discovery_stack_push_successors_of(&mut self, cfg: &ControlFlowGraph, node: Block) {
for successor in cfg.succ_iter(node) {
self.discovery_stack.push(successor);
}
}
// Visit the tree of Blocks rooted at `starting_point` and add them to `self.nodes_in_tree`.
// `self.num_preds_per_block` guides the process, ensuring we don't leave the tree-ish region
// and indirectly ensuring that the process will terminate in the presence of cycles in the
// graph. `self.discovery_stack` holds the search state in this function.
fn add_nodes_to_tree(&mut self, cfg: &ControlFlowGraph, starting_point: Block) {
// One might well ask why this doesn't loop forever when it encounters cycles in the
// control flow graph. The reason is that any cycle in the graph that is reachable from
// anywhere outside the cycle -- in particular, that is reachable from the function's
// entry node -- must have at least one node that has two or more predecessors. So the
// logic below won't follow into it, because it regards any such node as the root of some
// other tree.
debug_assert!(self.discovery_stack.is_empty());
debug_assert!(self.nodes_in_tree.is_empty());
self.nodes_in_tree.insert(starting_point);
self.discovery_stack_push_successors_of(cfg, starting_point);
while let Some(node) = self.discovery_stack.pop() {
match self.num_preds_per_block[node] {
// We arrived at a node with multiple predecessors, so it's a new root. Ignore it.
ZeroOneOrMany::Many => {}
// This node has just one predecessor, so we should incorporate it in the tree and
// immediately transition into searching from it instead.
ZeroOneOrMany::One => {
self.nodes_in_tree.insert(node);
self.discovery_stack_push_successors_of(cfg, node);
}
// This is meaningless. We arrived at a node that doesn't point back at where we
// came from.
ZeroOneOrMany::Zero => panic!("add_nodes_to_tree: inconsistent graph"),
}
}
}
}
// =============================================================================================
// Operations relating to `AvailEnv`
impl AvailEnv {
// Create a new one.
fn new(size: usize) -> Self {
let mut env = Self {
map: Vec::<Option<SlotInfo>>::new(),
};
env.map.resize(size, None);
env
}
// Debug only: checks (some of) the required AvailEnv invariants.
#[cfg(debug_assertions)]
fn check_invariants(&self) -> bool {
// Check that any overlapping entries overlap exactly. This is super lame (quadratic),
// but it's only used in debug builds.
for i in 0..self.map.len() {
if let Some(si) = self.map[i] {
for j in i + 1..self.map.len() {
if let Some(sj) = self.map[j] {
// "si and sj overlap, but not exactly"
if si.kind == sj.kind
&& overlaps(&si, sj.offset, sj.size)
&& !(si.offset == sj.offset && si.size == sj.size)
{
return false;
}
}
}
}
}
true
}
// Invalidates the binding associated with `reg`. Note that by construction of AvailEnv,
// `reg` can only be associated with one binding at once.
fn invalidate_by_reg(&mut self, reg: RegUnit) {
self.map[reg as usize] = None;
}
// Invalidates any binding that has any overlap with `(kind, offset, size)`.
fn invalidate_by_offset(&mut self, kind: StackSlotKind, offset: i32, size: u32) {
debug_assert!(is_slot_kind_tracked(kind));
for i in 0..self.map.len() {
if let Some(si) = &self.map[i] {
if si.kind == kind && overlaps(&si, offset, size) {
self.map[i] = None;
}
}
}
}
// Invalidates all bindings.
fn invalidate_all(&mut self) {
for i in 0..self.map.len() {
self.map[i] = None;
}
}
// Updates AvailEnv to track the effect of a `regmove` instruction.
fn copy_reg(&mut self, src: RegUnit, dst: RegUnit) {
self.map[dst as usize] = self.map[src as usize];
}
// Does `env` have the exact binding characterised by `(reg, kind, offset, size)` ?
fn has_exact_binding(&self, reg: RegUnit, kind: StackSlotKind, offset: i32, size: u32) -> bool {
debug_assert!(is_slot_kind_tracked(kind));
if let Some(si) = &self.map[reg as usize] {
return si.kind == kind && si.offset == offset && si.size == size;
}
// No such binding.
false
}
// Does `env` have a binding characterised by `(kind, offset, size)` but to a register, let's
// call it `other_reg`, that isn't `reg`? If so, return `other_reg`. Note that `other_reg`
// will have the same bank as `reg`. It is a checked error to call this function with a
// binding matching all four of `(reg, kind, offset, size)`.
fn has_inexact_binding(
&self,
reginfo: &RegInfo,
reg: RegUnit,
kind: StackSlotKind,
offset: i32,
size: u32,
) -> Option<RegUnit> {
debug_assert!(is_slot_kind_tracked(kind));
// Find the range of RegUnit numbers for the bank that contains `reg`, and use that as our
// search space. This is so as to guarantee that any match is restricted to the same bank
// as `reg`.
let (first_unit, num_units) = find_bank_limits(reginfo, reg);
for other_reg in first_unit..first_unit + num_units {
if let Some(si) = &self.map[other_reg as usize] {
if si.kind == kind && si.offset == offset && si.size == size {
if other_reg == reg {
panic!("has_inexact_binding: binding *is* exact!");
}
return Some(other_reg);
}
}
}
// No such binding.
None
}
// Create the binding `(reg, kind, offset, size)` in `env`, and throw away any previous
// binding associated with either `reg` or the `(kind, offset, size)` triple.
fn bind(&mut self, reg: RegUnit, kind: StackSlotKind, offset: i32, size: u32) {
debug_assert!(is_slot_kind_tracked(kind));
self.invalidate_by_offset(kind, offset, size);
self.map[reg as usize] = Some(SlotInfo { kind, offset, size });
}
}
// Invalidates in `avail_env`, any binding associated with a regunit that is written by `inst`.
fn invalidate_regs_written_by_inst(
locations: &SecondaryMap<Value, ValueLoc>,
diversions: &RegDiversions,
dfg: &DataFlowGraph,
avail_env: &mut AvailEnv,
inst: Inst,
) {
for v in dfg.inst_results(inst).iter() {
if let ValueLoc::Reg(ru) = locations[*v] {
// This must be true. It would be meaningless for an SSA value to be diverted before
// the point where it is defined.
debug_assert!(diversions.reg(*v, locations) == ru);
avail_env.invalidate_by_reg(ru);
}
}
}
// =============================================================================================
// Processing of individual instructions
impl RedundantReloadRemover {
// Process `inst`, possibly changing it into a different instruction, and possibly changing
// `self.avail_env` and `func.dfg`.
fn visit_inst(
&mut self,
func: &mut Function,
reginfo: &RegInfo,
isa: &dyn TargetIsa,
inst: Inst,
) {
// Get hold of the top-of-stack work item. This is the state that we will mutate during
// processing of this instruction.
debug_assert!(!self.processing_stack.is_empty());
let ProcessingStackElem {
avail_env,
diversions,
..
} = self.processing_stack.last_mut().unwrap();
#[cfg(debug_assertions)]
debug_assert!(
avail_env.check_invariants(),
"visit_inst: env invariants not ok"
);
let dfg = &mut func.dfg;
let locations = &func.locations;
let stack_slots = &func.stack_slots;
// To avoid difficulties with the borrow checker, do this in two stages. First, examine
// the instruction to see if it can be deleted or modified, and park the relevant
// information in `transform`. Update `self.avail_env` too. Later, use `transform` to
// actually do the transformation if necessary.
enum Transform {
NoChange,
ChangeToNopFill(Value), // delete this insn entirely
ChangeToCopyToSSA(Type, RegUnit), // change it into a copy from the specified reg
}
let mut transform = Transform::NoChange;
// In this match { .. } statement, either we must treat the instruction specially, or we
// must call `invalidate_regs_written_by_inst` on it.
match &dfg[inst] {
InstructionData::Unary {
opcode: Opcode::Spill,
arg: src_value,
} => {
// Extract: (src_reg, kind, offset, size)
// Invalidate: (kind, offset, size)
// Add new binding: {src_reg -> (kind, offset, size)}
// Don't forget that src_value might be diverted, so we have to deref it.
let slot = slot_of_value(locations, stack_slots, dfg.inst_results(inst)[0]);
let src_reg = diversions.reg(*src_value, locations);
let kind = slot.kind;
if is_slot_kind_tracked(kind) {
let offset = slot.offset.expect("visit_inst: spill with no offset");
let size = slot.size;
avail_env.bind(src_reg, kind, offset, size);
} else {
// We don't expect this insn to write any regs. But to be consistent with the
// rule above, do this anyway.
invalidate_regs_written_by_inst(locations, diversions, dfg, avail_env, inst);
}
}
InstructionData::Unary {
opcode: Opcode::Fill,
arg: src_value,
} => {
// Extract: (dst_reg, kind, offset, size)
// Invalidate: (kind, offset, size)
// Add new: {dst_reg -> (dst_value, kind, offset, size)}
let slot = slot_of_value(locations, stack_slots, *src_value);
let dst_value = dfg.inst_results(inst)[0];
let dst_reg = reg_of_value(locations, dst_value);
// This must be true. It would be meaningless for an SSA value to be diverted
// before it was defined.
debug_assert!(dst_reg == diversions.reg(dst_value, locations));
let kind = slot.kind;
if is_slot_kind_tracked(kind) {
let offset = slot.offset.expect("visit_inst: fill with no offset");
let size = slot.size;
if avail_env.has_exact_binding(dst_reg, kind, offset, size) {
// This instruction is an exact copy of a fill we saw earlier, and the
// loaded value is still valid. So we'll schedule this instruction for
// deletion (below). No need to make any changes to `avail_env`.
transform = Transform::ChangeToNopFill(*src_value);
} else if let Some(other_reg) =
avail_env.has_inexact_binding(reginfo, dst_reg, kind, offset, size)
{
// This fill is from the required slot, but into a different register
// `other_reg`. So replace it with a copy from `other_reg` to `dst_reg`
// and update `dst_reg`s binding to make it the same as `other_reg`'s, so
// as to maximise the chances of future matches after this instruction.
debug_assert!(other_reg != dst_reg);
transform =
Transform::ChangeToCopyToSSA(dfg.value_type(dst_value), other_reg);
avail_env.copy_reg(other_reg, dst_reg);
} else {
// This fill creates some new binding we don't know about. Update
// `avail_env` to track it.
avail_env.bind(dst_reg, kind, offset, size);
}
} else {
// Else it's "just another instruction that writes a reg", so we'd better
// treat it as such, just as we do below for instructions that we don't handle
// specially.
invalidate_regs_written_by_inst(locations, diversions, dfg, avail_env, inst);
}
}
InstructionData::RegMove { src, dst, .. } => {
// These happen relatively rarely, but just frequently enough that it's worth
// tracking the copy (at the machine level, it's really a copy) in `avail_env`.
avail_env.copy_reg(*src, *dst);
}
InstructionData::RegSpill { .. }
| InstructionData::RegFill { .. }
| InstructionData::Call { .. }
| InstructionData::CallIndirect { .. }
| InstructionData::StackLoad { .. }
| InstructionData::StackStore { .. }
| InstructionData::Unary {
opcode: Opcode::AdjustSpDown,
..
}
| InstructionData::UnaryImm {
opcode: Opcode::AdjustSpUpImm,
..
}
| InstructionData::UnaryImm {
opcode: Opcode::AdjustSpDownImm,
..
} => {
// All of these change, or might change, the memory-register bindings tracked in
// `avail_env` in some way we don't know about, or at least, we might be able to
// track, but for which the effort-to-benefit ratio seems too low to bother. So
// play safe: forget everything we know.
//
// For Call/CallIndirect, we could do better when compiling for calling
// conventions that have callee-saved registers, since bindings for them would
// remain valid across the call.
avail_env.invalidate_all();
}
_ => {
// Invalidate: any `avail_env` entry associated with a reg written by `inst`.
invalidate_regs_written_by_inst(locations, diversions, dfg, avail_env, inst);
}
}
// Actually do the transformation.
match transform {
Transform::NoChange => {}
Transform::ChangeToNopFill(arg) => {
// Load is completely redundant. Convert it to a no-op.
dfg.replace(inst).fill_nop(arg);
let ok = func.update_encoding(inst, isa).is_ok();
debug_assert!(
ok,
"fill_nop encoding missing for this type: `{}`",
func.dfg.display_inst(inst, isa)
);
}
Transform::ChangeToCopyToSSA(ty, reg) => {
// We already have the relevant value in some other register. Convert the
// load into a reg-reg copy.
dfg.replace(inst).copy_to_ssa(ty, reg);
let ok = func.update_encoding(inst, isa).is_ok();
debug_assert!(ok, "copy_to_ssa encoding missing for type {}", ty);
}
}
}
}
// =============================================================================================
// Top level: processing of tree shaped regions
impl RedundantReloadRemover {
// Push a clone of the top-of-stack ProcessingStackElem. This will be used to process exactly
// one Block. The diversions are created new, rather than cloned, to reflect the fact
// that diversions are local to each Block.
fn processing_stack_push(&mut self, cursor: CursorPosition) {
let avail_env = if let Some(stack_top) = self.processing_stack.last() {
stack_top.avail_env.clone()
} else {
AvailEnv::new(
self.num_regunits
.expect("processing_stack_push: num_regunits unknown!")
as usize,
)
};
self.processing_stack.push(ProcessingStackElem {
avail_env,
cursor,
diversions: RegDiversions::new(),
});
}
// This pushes the node `dst` onto the processing stack, and sets up the new
// ProcessingStackElem accordingly. But it does all that only if `dst` is part of the current
// tree *and* we haven't yet visited it.
fn processing_stack_maybe_push(&mut self, dst: Block) {
if self.nodes_in_tree.contains(dst) && !self.nodes_already_visited.contains(dst) {
if !self.processing_stack.is_empty() {
// If this isn't the outermost node in the tree (that is, the root), then it must
// have exactly one predecessor. Nodes with no predecessors are dead and not
// incorporated in any tree. Nodes with two or more predecessors are the root of
// some other tree, and visiting them as if they were part of the current tree
// would be a serious error.
debug_assert!(self.num_preds_per_block[dst] == ZeroOneOrMany::One);
}
self.processing_stack_push(CursorPosition::Before(dst));
self.nodes_already_visited.insert(dst);
}
}
// Perform redundant-reload removal on the tree shaped region of graph defined by `root` and
// `self.nodes_in_tree`. The following state is modified: `self.processing_stack`,
// `self.nodes_already_visited`, and `func.dfg`.
fn process_tree(
&mut self,
func: &mut Function,
reginfo: &RegInfo,
isa: &dyn TargetIsa,
root: Block,
) {
debug_assert!(self.nodes_in_tree.contains(root));
debug_assert!(self.processing_stack.is_empty());
debug_assert!(self.nodes_already_visited.is_empty());
// Create the initial work item
self.processing_stack_maybe_push(root);
while !self.processing_stack.is_empty() {
// It seems somewhat ridiculous to construct a whole new FuncCursor just so we can do
// next_inst() on it once, and then copy the resulting position back out. But use of
// a function-global FuncCursor, or of the EncCursor in struct Context, leads to
// borrow checker problems, as does including FuncCursor directly in
// ProcessingStackElem. In any case this is not as bad as it looks, since profiling
// shows that the build-insert-step-extract work is reduced to just 8 machine
// instructions in an optimised x86_64 build, presumably because rustc can inline and
// then optimise out almost all the work.
let tos = self.processing_stack.len() - 1;
let mut pos = FuncCursor::new(func).at_position(self.processing_stack[tos].cursor);
let maybe_inst = pos.next_inst();
self.processing_stack[tos].cursor = pos.position();
if let Some(inst) = maybe_inst {
// Deal with this insn, possibly changing it, possibly updating the top item of
// `self.processing_stack`.
self.visit_inst(func, reginfo, isa, inst);
// Update diversions after the insn.
self.processing_stack[tos].diversions.apply(&func.dfg[inst]);
// If the insn can branch outside this Block, push work items on the stack for all
// target Blocks that are part of the same tree and that we haven't yet visited.
// The next iteration of this instruction-processing loop will immediately start
// work on the most recently pushed Block, and will eventually continue in this Block
// when those new items have been removed from the stack.
match func.dfg.analyze_branch(inst) {
BranchInfo::NotABranch => (),
BranchInfo::SingleDest(dst, _) => {
self.processing_stack_maybe_push(dst);
}
BranchInfo::Table(jt, default) => {
func.jump_tables[jt]
.iter()
.for_each(|dst| self.processing_stack_maybe_push(*dst));
if let Some(dst) = default {
self.processing_stack_maybe_push(dst);
}
}
}
} else {
// We've come to the end of the current work-item (Block). We'll already have
// processed the fallthrough/continuation/whatever for it using the logic above.
// Pop it off the stack and resume work on its parent.
self.processing_stack.pop();
}
}
}
}
// =============================================================================================
// Top level: perform redundant fill removal for a complete function
impl RedundantReloadRemover {
/// Create a new remover state.
pub fn new() -> Self {
Self {
num_regunits: None,
num_preds_per_block: PrimaryMap::<Block, ZeroOneOrMany>::with_capacity(8),
discovery_stack: Vec::<Block>::with_capacity(16),
nodes_in_tree: EntitySet::<Block>::new(),
processing_stack: Vec::<ProcessingStackElem>::with_capacity(8),
nodes_already_visited: EntitySet::<Block>::new(),
}
}
/// Clear the state of the remover.
pub fn clear(&mut self) {
self.clear_for_new_function();
}
fn clear_for_new_function(&mut self) {
self.num_preds_per_block.clear();
self.clear_for_new_tree();
}
fn clear_for_new_tree(&mut self) {
self.discovery_stack.clear();
self.nodes_in_tree.clear();
self.processing_stack.clear();
self.nodes_already_visited.clear();
}
#[inline(never)]
fn do_redundant_fill_removal_on_function(
&mut self,
func: &mut Function,
reginfo: &RegInfo,
isa: &dyn TargetIsa,
cfg: &ControlFlowGraph,
) {
// Fail in an obvious way if there are more than (2^32)-1 Blocks in this function.
let num_blocks: u32 = func.dfg.num_blocks().try_into().unwrap();
// Clear out per-tree state.
self.clear_for_new_function();
// Create a PrimaryMap that summarises the number of predecessors for each block, as 0, 1
// or "many", and that also claims the entry block as having "many" predecessors.
self.num_preds_per_block.clear();
self.num_preds_per_block.reserve(num_blocks as usize);
for i in 0..num_blocks {
let mut pi = cfg.pred_iter(Block::from_u32(i));
let mut n_pi = ZeroOneOrMany::Zero;
if pi.next().is_some() {
n_pi = ZeroOneOrMany::One;
if pi.next().is_some() {
n_pi = ZeroOneOrMany::Many;
// We don't care if there are more than two preds, so stop counting now.
}
}
self.num_preds_per_block.push(n_pi);
}
debug_assert!(self.num_preds_per_block.len() == num_blocks as usize);
// The entry block must be the root of some tree, so set up the state to reflect that.
let entry_block = func
.layout
.entry_block()
.expect("do_redundant_fill_removal_on_function: entry block unknown");
debug_assert!(self.num_preds_per_block[entry_block] == ZeroOneOrMany::Zero);
self.num_preds_per_block[entry_block] = ZeroOneOrMany::Many;
// Now build and process trees.
for root_ix in 0..self.num_preds_per_block.len() {
let root = Block::from_u32(root_ix as u32);
// Build a tree for each node that has two or more preds, and ignore all other nodes.
if self.num_preds_per_block[root] != ZeroOneOrMany::Many {
continue;
}
// Clear out per-tree state.
self.clear_for_new_tree();
// Discovery phase: build the tree, as `root` and `self.nodes_in_tree`.
self.add_nodes_to_tree(cfg, root);
debug_assert!(self.nodes_in_tree.cardinality() > 0);
debug_assert!(self.num_preds_per_block[root] == ZeroOneOrMany::Many);
// Processing phase: do redundant-reload-removal.
self.process_tree(func, reginfo, isa, root);
debug_assert!(
self.nodes_in_tree.cardinality() == self.nodes_already_visited.cardinality()
);
}
}
}
// =============================================================================================
// Top level: the external interface
struct Context<'a> {
// Current instruction as well as reference to function and ISA.
cur: EncCursor<'a>,
// Cached ISA information. We save it here to avoid frequent virtual function calls on the
// `TargetIsa` trait object.
reginfo: RegInfo,
// References to contextual data structures we need.
cfg: &'a ControlFlowGraph,
// The running state.
state: &'a mut RedundantReloadRemover,
}
impl RedundantReloadRemover {
/// Run the remover.
pub fn run(&mut self, isa: &dyn TargetIsa, func: &mut Function, cfg: &ControlFlowGraph) {
let ctx = Context {
cur: EncCursor::new(func, isa),
reginfo: isa.register_info(),
cfg,
state: self,
};
let mut total_regunits = 0;
for rb in isa.register_info().banks {
total_regunits += rb.units;
}
ctx.state.num_regunits = Some(total_regunits);
ctx.state.do_redundant_fill_removal_on_function(
ctx.cur.func,
&ctx.reginfo,
ctx.cur.isa,
&ctx.cfg,
);
}
}