1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! RSA keys.

use asn1_der::{Asn1Der, FromDerObject, IntoDerObject, DerObject, DerTag, DerValue, Asn1DerError};
use lazy_static::lazy_static;
use super::error::*;
use ring::rand::SystemRandom;
use ring::signature::{self, RsaKeyPair, RSA_PKCS1_SHA256, RSA_PKCS1_2048_8192_SHA256};
use ring::signature::KeyPair;
use std::{fmt::{self, Write}, sync::Arc};
use zeroize::Zeroize;

/// An RSA keypair.
#[derive(Clone)]
pub struct Keypair(Arc<RsaKeyPair>);

impl Keypair {
    /// Decode an RSA keypair from a DER-encoded private key in PKCS#8 PrivateKeyInfo
    /// format (i.e. unencrypted) as defined in [RFC5208].
    ///
    /// [RFC5208]: https://tools.ietf.org/html/rfc5208#section-5
    pub fn from_pkcs8(der: &mut [u8]) -> Result<Keypair, DecodingError> {
        let kp = RsaKeyPair::from_pkcs8(&der)
            .map_err(|e| DecodingError::new("RSA PKCS#8 PrivateKeyInfo").source(e))?;
        der.zeroize();
        Ok(Keypair(Arc::new(kp)))
    }

    /// Get the public key from the keypair.
    pub fn public(&self) -> PublicKey {
        PublicKey(self.0.public_key().as_ref().to_vec())
    }

    /// Sign a message with this keypair.
    pub fn sign(&self, data: &[u8]) -> Result<Vec<u8>, SigningError> {
        let mut signature = vec![0; self.0.public_modulus_len()];
        let rng = SystemRandom::new();
        match self.0.sign(&RSA_PKCS1_SHA256, &rng, &data, &mut signature) {
            Ok(()) => Ok(signature),
            Err(e) => Err(SigningError::new("RSA").source(e))
        }
    }
}

/// An RSA public key.
#[derive(Clone, PartialEq, Eq)]
pub struct PublicKey(Vec<u8>);

impl PublicKey {
    /// Verify an RSA signature on a message using the public key.
    pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
        let key = signature::UnparsedPublicKey::new(&RSA_PKCS1_2048_8192_SHA256, &self.0);
        key.verify(msg, sig).is_ok()
    }

    /// Encode the RSA public key in DER as a PKCS#1 RSAPublicKey structure,
    /// as defined in [RFC3447].
    ///
    /// [RFC3447]: https://tools.ietf.org/html/rfc3447#appendix-A.1.1
    pub fn encode_pkcs1(&self) -> Vec<u8> {
        // This is the encoding currently used in-memory, so it is trivial.
        self.0.clone()
    }

    /// Encode the RSA public key in DER as a X.509 SubjectPublicKeyInfo structure,
    /// as defined in [RFC5280].
    ///
    /// [RFC5280]: https://tools.ietf.org/html/rfc5280#section-4.1
    pub fn encode_x509(&self) -> Vec<u8> {
        let spki = Asn1SubjectPublicKeyInfo {
            algorithmIdentifier: Asn1RsaEncryption {
                algorithm: Asn1OidRsaEncryption(),
                parameters: ()
            },
            subjectPublicKey: Asn1SubjectPublicKey(self.clone())
        };
        let mut buf = vec![0u8; spki.serialized_len()];
        spki.serialize(buf.iter_mut()).map(|_| buf)
            .expect("RSA X.509 public key encoding failed.")
    }

    /// Decode an RSA public key from a DER-encoded X.509 SubjectPublicKeyInfo
    /// structure. See also `encode_x509`.
    pub fn decode_x509(pk: &[u8]) -> Result<PublicKey, DecodingError> {
        Asn1SubjectPublicKeyInfo::deserialize(pk.iter())
            .map_err(|e| DecodingError::new("RSA X.509").source(e))
            .map(|spki| spki.subjectPublicKey.0)
    }
}

impl fmt::Debug for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let bytes = &self.0;
        let mut hex = String::with_capacity(bytes.len() * 2);

        for byte in bytes {
            write!(hex, "{:02x}", byte).expect("Can't fail on writing to string");
        }

        f.debug_struct("PublicKey")
            .field("pkcs1", &hex)
            .finish()
    }
}

//////////////////////////////////////////////////////////////////////////////
// DER encoding / decoding of public keys
//
// Primer: http://luca.ntop.org/Teaching/Appunti/asn1.html
// Playground: https://lapo.it/asn1js/

lazy_static! {
    /// The DER encoding of the object identifier (OID) 'rsaEncryption' for
    /// RSA public keys defined for X.509 in [RFC-3279] and used in
    /// SubjectPublicKeyInfo structures defined in [RFC-5280].
    ///
    /// [RFC-3279]: https://tools.ietf.org/html/rfc3279#section-2.3.1
    /// [RFC-5280]: https://tools.ietf.org/html/rfc5280#section-4.1
    static ref OID_RSA_ENCRYPTION_DER: DerObject =
        DerObject {
            tag: DerTag::x06,
            value: DerValue {
                data: vec![ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 ]
            }
        };
}

/// The ASN.1 OID for "rsaEncryption".
#[derive(Clone)]
struct Asn1OidRsaEncryption();

impl IntoDerObject for Asn1OidRsaEncryption {
    fn into_der_object(self) -> DerObject {
        OID_RSA_ENCRYPTION_DER.clone()
    }
    fn serialized_len(&self) -> usize {
        OID_RSA_ENCRYPTION_DER.serialized_len()
    }
}

impl FromDerObject for Asn1OidRsaEncryption {
    fn from_der_object(o: DerObject) -> Result<Self, Asn1DerError> {
        if o.tag != DerTag::x06 {
            return Err(Asn1DerError::InvalidTag)
        }
        if o.value != OID_RSA_ENCRYPTION_DER.value {
            return Err(Asn1DerError::InvalidEncoding)
        }
        Ok(Asn1OidRsaEncryption())
    }
}

/// The ASN.1 AlgorithmIdentifier for "rsaEncryption".
#[derive(Asn1Der)]
struct Asn1RsaEncryption {
    algorithm: Asn1OidRsaEncryption,
    parameters: ()
}

/// The ASN.1 SubjectPublicKey inside a SubjectPublicKeyInfo,
/// i.e. encoded as a DER BIT STRING.
struct Asn1SubjectPublicKey(PublicKey);

impl IntoDerObject for Asn1SubjectPublicKey {
    fn into_der_object(self) -> DerObject {
        let pk_der = (self.0).0;
        let mut bit_string = Vec::with_capacity(pk_der.len() + 1);
        // The number of bits in pk_der is trivially always a multiple of 8,
        // so there are always 0 "unused bits" signaled by the first byte.
        bit_string.push(0u8);
        bit_string.extend(pk_der);
        DerObject::new(DerTag::x03, bit_string.into())
    }
    fn serialized_len(&self) -> usize {
        DerObject::compute_serialized_len((self.0).0.len() + 1)
    }
}

impl FromDerObject for Asn1SubjectPublicKey {
    fn from_der_object(o: DerObject) -> Result<Self, Asn1DerError> {
        if o.tag != DerTag::x03 {
            return Err(Asn1DerError::InvalidTag)
        }
        let pk_der: Vec<u8> = o.value.data.into_iter().skip(1).collect();
        // We don't parse pk_der further as an ASN.1 RsaPublicKey, since
        // we only need the DER encoding for `verify`.
        Ok(Asn1SubjectPublicKey(PublicKey(pk_der)))
    }
}

/// ASN.1 SubjectPublicKeyInfo
#[derive(Asn1Der)]
#[allow(non_snake_case)]
struct Asn1SubjectPublicKeyInfo {
    algorithmIdentifier: Asn1RsaEncryption,
    subjectPublicKey: Asn1SubjectPublicKey
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::*;
    use rand::seq::SliceRandom;
    use std::fmt;

    const KEY1: &'static [u8] = include_bytes!("test/rsa-2048.pk8");
    const KEY2: &'static [u8] = include_bytes!("test/rsa-3072.pk8");
    const KEY3: &'static [u8] = include_bytes!("test/rsa-4096.pk8");

    #[derive(Clone)]
    struct SomeKeypair(Keypair);

    impl fmt::Debug for SomeKeypair {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            write!(f, "SomeKeypair")
        }
    }

    impl Arbitrary for SomeKeypair {
        fn arbitrary<G: Gen>(g: &mut G) -> SomeKeypair {
            let mut key = [KEY1, KEY2, KEY3].choose(g).unwrap().to_vec();
            SomeKeypair(Keypair::from_pkcs8(&mut key).unwrap())
        }
    }

    #[test]
    fn rsa_from_pkcs8() {
        assert!(Keypair::from_pkcs8(&mut KEY1.to_vec()).is_ok());
        assert!(Keypair::from_pkcs8(&mut KEY2.to_vec()).is_ok());
        assert!(Keypair::from_pkcs8(&mut KEY3.to_vec()).is_ok());
    }

    #[test]
    fn rsa_x509_encode_decode() {
        fn prop(SomeKeypair(kp): SomeKeypair) -> Result<bool, String> {
            let pk = kp.public();
            PublicKey::decode_x509(&pk.encode_x509())
                .map_err(|e| e.to_string())
                .map(|pk2| pk2 == pk)
        }
        QuickCheck::new().tests(10).quickcheck(prop as fn(_) -> _);
    }

    #[test]
    fn rsa_sign_verify() {
        fn prop(SomeKeypair(kp): SomeKeypair, msg: Vec<u8>) -> Result<bool, SigningError> {
            kp.sign(&msg).map(|s| kp.public().verify(&msg, &s))
        }
        QuickCheck::new().tests(10).quickcheck(prop as fn(_,_) -> _);
    }
}