1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! [`Secret`] wrapper type for more carefully handling secret values
//! (e.g. passwords, cryptographic keys, access tokens or other credentials)
//!
//! # Goals
//!
//! The goals of this crate are as follows:
//!
//! - Make secret access explicit and easy-to-audit via the
//!   [`ExposeSecret`] trait. This also makes secret values immutable which
//!   helps avoid making accidental copies (e.g. reallocating the backing
//!   buffer for a `Vec`)
//! - Prevent accidental leakage of secrets via channels like debug logging
//! - Ensure secrets are wiped from memory on drop securely
//!   (using the [`zeroize`] crate)
//!
//! Presently this crate favors a simple, `no_std`-friendly, safe i.e.
//! `forbid(unsafe_code)`-based implementation and does not provide more advanced
//! memory protection mechanisms e.g. ones based on `mlock(2)`/`mprotect(2)`.
//! We may explore more advanced protection mechanisms in the future.
//!
//! # `Box`, `String`, and `Vec` wrappers
//!
//! Most users of this crate will simply want [`Secret`] wrappers around Rust's
//! core collection types: i.e. `Box`, `String`, and `Vec`.
//!
//! When the `alloc` feature of this crate is enabled (which it is by default),
//! [`SecretBox`], [`SecretString`], and [`SecretVec`] type aliases are
//! available.
//!
//! There's nothing particularly fancy about these: they're just the simple
//! composition of `Secret<Box<_>>`, `Secret<String>`, and `Secret<Vec<_>>`!
//! However, in many cases they're all you will need.
//!
//! # Advanced usage
//!
//! If you are hitting limitations on what's possible with the collection type
//! wrappers, you'll want to define your own newtype which lets you customize
//! the implementation:
//!
//! ```rust
//! use secrecy::{CloneableSecret, DebugSecret, Secret, Zeroize};
//!
//! #[derive(Clone)]
//! pub struct AccountNumber(String);
//!
//! impl Zeroize for AccountNumber {
//!     fn zeroize(&mut self) {
//!         self.0.zeroize();
//!     }
//! }
//!
//! /// Permits cloning
//! impl CloneableSecret for AccountNumber {}
//!
//! /// Provides a `Debug` impl (by default `[[REDACTED]]`)
//! impl DebugSecret for AccountNumber {}
//!
//! /// Use this alias when storing secret values
//! pub type SecretAccountNumber = Secret<AccountNumber>;
//! ```
//!
//! # `serde` support
//!
//! When the `serde` feature of this crate is enabled, the [`Secret`] type will
//! receive a [`Deserialize`] impl for all `Secret<T>` types where
//! `T: DeserializeOwned`. This allows *loading* secret values from data
//! deserialized from `serde` (be careful to clean up any intermediate secrets
//! when doing this, e.g. the unparsed input!)
//!
//! To prevent exfiltration of secret values via `serde`, by default `Secret<T>`
//! does *not* receive a corresponding [`Serialize`] impl. If you would like
//! types of `Secret<T>` to be serializable with `serde`, you will need to impl
//! the [`SerializableSecret`] marker trait on `T`.

#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(html_root_url = "https://docs.rs/secrecy/0.7.0")]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(feature = "alloc")]
mod boxed;
#[cfg(feature = "bytes")]
mod bytes;
#[cfg(feature = "alloc")]
mod string;
#[cfg(feature = "alloc")]
mod vec;

pub use zeroize::{self, Zeroize};

#[cfg(feature = "alloc")]
pub use self::{boxed::SecretBox, string::SecretString, vec::SecretVec};

#[cfg(feature = "bytes")]
pub use self::bytes::SecretBytesMut;

use core::{
    any,
    fmt::{self, Debug},
};

#[cfg(feature = "serde")]
use serde::{de, ser, Deserialize, Serialize};

/// Wrapper type for values that contains secrets, which attempts to limit
/// accidental exposure and ensure secrets are wiped from memory when dropped.
/// (e.g. passwords, cryptographic keys, access tokens or other credentials)
///
/// Access to the secret inner value occurs through the [`ExposeSecret`] trait,
/// which provides an `expose_secret()` method for accessing the inner secret
/// value.
pub struct Secret<S>
where
    S: Zeroize,
{
    /// Inner secret value
    inner_secret: S,
}

impl<S> Secret<S>
where
    S: Zeroize,
{
    /// Take ownership of a secret value
    pub fn new(secret: S) -> Self {
        Secret {
            inner_secret: secret,
        }
    }
}

impl<S> ExposeSecret<S> for Secret<S>
where
    S: Zeroize,
{
    fn expose_secret(&self) -> &S {
        &self.inner_secret
    }
}

impl<S> Clone for Secret<S>
where
    S: CloneableSecret,
{
    fn clone(&self) -> Self {
        Secret {
            inner_secret: self.inner_secret.clone(),
        }
    }
}

impl<S> Debug for Secret<S>
where
    S: Zeroize + DebugSecret,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("Secret(")?;
        S::debug_secret(f)?;
        f.write_str(")")
    }
}

impl<S> Drop for Secret<S>
where
    S: Zeroize,
{
    fn drop(&mut self) {
        // Zero the secret out from memory
        self.inner_secret.zeroize();
    }
}

/// Marker trait for secrets which are allowed to be cloned
pub trait CloneableSecret: Clone + Zeroize {}

/// Implement `CloneableSecret` on arrays of types that impl `Clone` and
/// `Zeroize`.
macro_rules! impl_cloneable_secret_for_array {
    ($($size:expr),+) => {
        $(
            impl<T: Clone + Zeroize> CloneableSecret for [T; $size] {}
        )+
     };
}

// TODO(tarcieri): const generics
impl_cloneable_secret_for_array!(
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
    27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
    51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
);

/// Expose a reference to an inner secret
pub trait ExposeSecret<S> {
    /// Expose secret: this is the only method providing access to a secret.
    fn expose_secret(&self) -> &S;
}

/// Debugging trait which is specialized for handling secret values
pub trait DebugSecret {
    /// Format information about the secret's type.
    ///
    /// This can be thought of as an equivalent to [`Debug::fmt`], but one
    /// which by design does not permit access to the secret value.
    fn debug_secret(f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        f.write_str("[REDACTED ")?;
        f.write_str(any::type_name::<Self>())?;
        f.write_str("]")
    }
}

/// Implement `DebugSecret` on arrays of types that impl `Debug`.
macro_rules! impl_debug_secret_for_array {
    ($($size:expr),+) => {
        $(
            impl<T: Debug> DebugSecret for [T; $size] {}
        )+
     };
}

// TODO(tarcieri): const generics
impl_debug_secret_for_array!(
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
    27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
    51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
);

/// Marker trait for secret types which can be [`Serialize`]-d by [`serde`].
///
/// When the `serde` feature of this crate is enabled and types are marked with
/// this trait, they receive a [`Serialize` impl][1] for `Secret<T>`.
/// (NOTE: all types which impl `DeserializeOwned` receive a [`Deserialize`]
/// impl)
///
/// This is done deliberately to prevent accidental exfiltration of secrets
/// via `serde` serialization.
///
/// If you are working with [`SecretString`] or [`SecretVec`], not that
/// by design these types do *NOT* impl this trait.
///
/// If you really want to have `serde` serialize those types, use the
/// [`serialize_with`][2] attribute to specify a serializer that exposes the secret.
///
/// [1]: https://docs.rs/secrecy/latest/secrecy/struct.Secret.html#implementations
/// [2]: https://serde.rs/field-attrs.html#serialize_with
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
pub trait SerializableSecret: Serialize {}

#[cfg(feature = "serde")]
impl<'de, T> Deserialize<'de> for Secret<T>
where
    T: Zeroize + Clone + de::DeserializeOwned + Sized,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        T::deserialize(deserializer).map(Secret::new)
    }
}

#[cfg(feature = "serde")]
impl<T> Serialize for Secret<T>
where
    T: Zeroize + SerializableSecret + Serialize + Sized,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        self.expose_secret().serialize(serializer)
    }
}