1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
//! [`Secret`] wrapper type for more carefully handling secret values
//! (e.g. passwords, cryptographic keys, access tokens or other credentials)
//!
//! # Goals
//!
//! The goals of this crate are as follows:
//!
//! - Make secret access explicit and easy-to-audit via the
//! [`ExposeSecret`] trait. This also makes secret values immutable which
//! helps avoid making accidental copies (e.g. reallocating the backing
//! buffer for a `Vec`)
//! - Prevent accidental leakage of secrets via channels like debug logging
//! - Ensure secrets are wiped from memory on drop securely
//! (using the [`zeroize`] crate)
//!
//! Presently this crate favors a simple, `no_std`-friendly, safe i.e.
//! `forbid(unsafe_code)`-based implementation and does not provide more advanced
//! memory protection mechanisms e.g. ones based on `mlock(2)`/`mprotect(2)`.
//! We may explore more advanced protection mechanisms in the future.
//!
//! # `Box`, `String`, and `Vec` wrappers
//!
//! Most users of this crate will simply want [`Secret`] wrappers around Rust's
//! core collection types: i.e. `Box`, `String`, and `Vec`.
//!
//! When the `alloc` feature of this crate is enabled (which it is by default),
//! [`SecretBox`], [`SecretString`], and [`SecretVec`] type aliases are
//! available.
//!
//! There's nothing particularly fancy about these: they're just the simple
//! composition of `Secret<Box<_>>`, `Secret<String>`, and `Secret<Vec<_>>`!
//! However, in many cases they're all you will need.
//!
//! # Advanced usage
//!
//! If you are hitting limitations on what's possible with the collection type
//! wrappers, you'll want to define your own newtype which lets you customize
//! the implementation:
//!
//! ```rust
//! use secrecy::{CloneableSecret, DebugSecret, Secret, Zeroize};
//!
//! #[derive(Clone)]
//! pub struct AccountNumber(String);
//!
//! impl Zeroize for AccountNumber {
//! fn zeroize(&mut self) {
//! self.0.zeroize();
//! }
//! }
//!
//! /// Permits cloning
//! impl CloneableSecret for AccountNumber {}
//!
//! /// Provides a `Debug` impl (by default `[[REDACTED]]`)
//! impl DebugSecret for AccountNumber {}
//!
//! /// Use this alias when storing secret values
//! pub type SecretAccountNumber = Secret<AccountNumber>;
//! ```
//!
//! # `serde` support
//!
//! When the `serde` feature of this crate is enabled, the [`Secret`] type will
//! receive a [`Deserialize`] impl for all `Secret<T>` types where
//! `T: DeserializeOwned`. This allows *loading* secret values from data
//! deserialized from `serde` (be careful to clean up any intermediate secrets
//! when doing this, e.g. the unparsed input!)
//!
//! To prevent exfiltration of secret values via `serde`, by default `Secret<T>`
//! does *not* receive a corresponding [`Serialize`] impl. If you would like
//! types of `Secret<T>` to be serializable with `serde`, you will need to impl
//! the [`SerializableSecret`] marker trait on `T`.
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(html_root_url = "https://docs.rs/secrecy/0.7.0")]
#![forbid(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
mod boxed;
#[cfg(feature = "bytes")]
mod bytes;
#[cfg(feature = "alloc")]
mod string;
#[cfg(feature = "alloc")]
mod vec;
pub use zeroize::{self, Zeroize};
#[cfg(feature = "alloc")]
pub use self::{boxed::SecretBox, string::SecretString, vec::SecretVec};
#[cfg(feature = "bytes")]
pub use self::bytes::SecretBytesMut;
use core::{
any,
fmt::{self, Debug},
};
#[cfg(feature = "serde")]
use serde::{de, ser, Deserialize, Serialize};
/// Wrapper type for values that contains secrets, which attempts to limit
/// accidental exposure and ensure secrets are wiped from memory when dropped.
/// (e.g. passwords, cryptographic keys, access tokens or other credentials)
///
/// Access to the secret inner value occurs through the [`ExposeSecret`] trait,
/// which provides an `expose_secret()` method for accessing the inner secret
/// value.
pub struct Secret<S>
where
S: Zeroize,
{
/// Inner secret value
inner_secret: S,
}
impl<S> Secret<S>
where
S: Zeroize,
{
/// Take ownership of a secret value
pub fn new(secret: S) -> Self {
Secret {
inner_secret: secret,
}
}
}
impl<S> ExposeSecret<S> for Secret<S>
where
S: Zeroize,
{
fn expose_secret(&self) -> &S {
&self.inner_secret
}
}
impl<S> Clone for Secret<S>
where
S: CloneableSecret,
{
fn clone(&self) -> Self {
Secret {
inner_secret: self.inner_secret.clone(),
}
}
}
impl<S> Debug for Secret<S>
where
S: Zeroize + DebugSecret,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("Secret(")?;
S::debug_secret(f)?;
f.write_str(")")
}
}
impl<S> Drop for Secret<S>
where
S: Zeroize,
{
fn drop(&mut self) {
// Zero the secret out from memory
self.inner_secret.zeroize();
}
}
/// Marker trait for secrets which are allowed to be cloned
pub trait CloneableSecret: Clone + Zeroize {}
/// Implement `CloneableSecret` on arrays of types that impl `Clone` and
/// `Zeroize`.
macro_rules! impl_cloneable_secret_for_array {
($($size:expr),+) => {
$(
impl<T: Clone + Zeroize> CloneableSecret for [T; $size] {}
)+
};
}
// TODO(tarcieri): const generics
impl_cloneable_secret_for_array!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
);
/// Expose a reference to an inner secret
pub trait ExposeSecret<S> {
/// Expose secret: this is the only method providing access to a secret.
fn expose_secret(&self) -> &S;
}
/// Debugging trait which is specialized for handling secret values
pub trait DebugSecret {
/// Format information about the secret's type.
///
/// This can be thought of as an equivalent to [`Debug::fmt`], but one
/// which by design does not permit access to the secret value.
fn debug_secret(f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
f.write_str("[REDACTED ")?;
f.write_str(any::type_name::<Self>())?;
f.write_str("]")
}
}
/// Implement `DebugSecret` on arrays of types that impl `Debug`.
macro_rules! impl_debug_secret_for_array {
($($size:expr),+) => {
$(
impl<T: Debug> DebugSecret for [T; $size] {}
)+
};
}
// TODO(tarcieri): const generics
impl_debug_secret_for_array!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
);
/// Marker trait for secret types which can be [`Serialize`]-d by [`serde`].
///
/// When the `serde` feature of this crate is enabled and types are marked with
/// this trait, they receive a [`Serialize` impl][1] for `Secret<T>`.
/// (NOTE: all types which impl `DeserializeOwned` receive a [`Deserialize`]
/// impl)
///
/// This is done deliberately to prevent accidental exfiltration of secrets
/// via `serde` serialization.
///
/// If you are working with [`SecretString`] or [`SecretVec`], not that
/// by design these types do *NOT* impl this trait.
///
/// If you really want to have `serde` serialize those types, use the
/// [`serialize_with`][2] attribute to specify a serializer that exposes the secret.
///
/// [1]: https://docs.rs/secrecy/latest/secrecy/struct.Secret.html#implementations
/// [2]: https://serde.rs/field-attrs.html#serialize_with
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
pub trait SerializableSecret: Serialize {}
#[cfg(feature = "serde")]
impl<'de, T> Deserialize<'de> for Secret<T>
where
T: Zeroize + Clone + de::DeserializeOwned + Sized,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: de::Deserializer<'de>,
{
T::deserialize(deserializer).map(Secret::new)
}
}
#[cfg(feature = "serde")]
impl<T> Serialize for Secret<T>
where
T: Zeroize + SerializableSecret + Serialize + Sized,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
self.expose_secret().serialize(serializer)
}
}