1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! This module is composed of two structs: [`HttpApi`] and [`HttpWorker`]. Calling the [`http`]
//! function returns a pair of [`HttpApi`] and [`HttpWorker`] that share some state.
//!
//! The [`HttpApi`] is (indirectly) passed to the runtime when calling an offchain worker, while
//! the [`HttpWorker`] must be processed in the background. The [`HttpApi`] mimics the API of the
//! HTTP-related methods available to offchain workers.
//!
//! The reason for this design is driven by the fact that HTTP requests should continue running
//! (i.e.: the socket should continue being processed) in the background even if the runtime isn't
//! actively calling any function.

use crate::api::timestamp;
use bytes::buf::ext::{Reader, BufExt};
use fnv::FnvHashMap;
use futures::{prelude::*, future, channel::mpsc};
use log::error;
use sp_core::offchain::{HttpRequestId, Timestamp, HttpRequestStatus, HttpError};
use std::{convert::TryFrom, fmt, io::Read as _, pin::Pin, task::{Context, Poll}};
use sp_utils::mpsc::{tracing_unbounded, TracingUnboundedSender, TracingUnboundedReceiver};
use std::sync::Arc;
use hyper::{Client as HyperClient, Body, client};
use hyper_rustls::HttpsConnector;

/// Wrapper struct used for keeping the hyper_rustls client running.
#[derive(Clone)]
pub struct SharedClient(Arc<HyperClient<HttpsConnector<client::HttpConnector>, Body>>);

impl SharedClient {
	pub fn new() -> Self {
		Self(Arc::new(HyperClient::builder().build(HttpsConnector::new())))
	}
}

/// Creates a pair of [`HttpApi`] and [`HttpWorker`].
pub fn http(shared_client: SharedClient) -> (HttpApi, HttpWorker) {
	let (to_worker, from_api) = tracing_unbounded("mpsc_ocw_to_worker");
	let (to_api, from_worker) = tracing_unbounded("mpsc_ocw_to_api");

	let api = HttpApi {
		to_worker,
		from_worker: from_worker.fuse(),
		// We start with a random ID for the first HTTP request, to prevent mischievous people from
		// writing runtime code with hardcoded IDs.
		next_id: HttpRequestId(rand::random::<u16>() % 2000),
		requests: FnvHashMap::default(),
	};

	let engine = HttpWorker {
		to_api,
		from_api,
		http_client: shared_client.0,
		requests: Vec::new(),
	};

	(api, engine)
}

/// Provides HTTP capabilities.
///
/// Since this struct is a helper for offchain workers, its API is mimicking the API provided
/// to offchain workers.
pub struct HttpApi {
	/// Used to sends messages to the worker.
	to_worker: TracingUnboundedSender<ApiToWorker>,
	/// Used to receive messages from the worker.
	/// We use a `Fuse` in order to have an extra protection against panicking.
	from_worker: stream::Fuse<TracingUnboundedReceiver<WorkerToApi>>,
	/// Id to assign to the next HTTP request that is started.
	next_id: HttpRequestId,
	/// List of HTTP requests in preparation or in progress.
	requests: FnvHashMap<HttpRequestId, HttpApiRequest>,
}

/// One active request within `HttpApi`.
enum HttpApiRequest {
	/// The request object is being constructed locally and not started yet.
	NotDispatched(hyper::Request<hyper::Body>, hyper::body::Sender),
	/// The request has been dispatched and we're in the process of sending out the body (if the
	/// field is `Some`) or waiting for a response (if the field is `None`).
	Dispatched(Option<hyper::body::Sender>),
	/// Received a response.
	Response(HttpApiRequestRp),
	/// A request has been dispatched but the worker notified us of an error. We report this
	/// failure to the user as an `IoError` and remove the request from the list as soon as
	/// possible.
	Fail(hyper::Error),
}

/// A request within `HttpApi` that has received a response.
struct HttpApiRequestRp {
	/// We might still be writing the request's body when the response comes.
	/// This field allows to continue writing that body.
	sending_body: Option<hyper::body::Sender>,
	/// Status code of the response.
	status_code: hyper::StatusCode,
	/// Headers of the response.
	headers: hyper::HeaderMap,
	/// Body of the response, as a channel of `Chunk` objects.
	/// While the code is designed to drop the `Receiver` once it ends, we wrap it within a
	/// `Fuse` in order to be extra precautious about panics.
	/// Elements extracted from the channel are first put into `current_read_chunk`.
	/// If the channel produces an error, then that is translated into an `IoError` and the request
	/// is removed from the list.
	body: stream::Fuse<mpsc::Receiver<Result<hyper::body::Bytes, hyper::Error>>>,
	/// Chunk that has been extracted from the channel and that is currently being read.
	/// Reading data from the response should read from this field in priority.
	current_read_chunk: Option<Reader<hyper::body::Bytes>>,
}

impl HttpApi {
	/// Mimics the corresponding method in the offchain API.
	pub fn request_start(
		&mut self,
		method: &str,
		uri: &str
	) -> Result<HttpRequestId, ()> {
		// Start by building the prototype of the request.
		// We do this first so that we don't touch anything in `self` if building the prototype
		// fails.
		let (body_sender, body) = hyper::Body::channel();
		let mut request = hyper::Request::new(body);
		*request.method_mut() = hyper::Method::from_bytes(method.as_bytes()).map_err(|_| ())?;
		*request.uri_mut() = hyper::Uri::from_maybe_shared(uri.to_owned()).map_err(|_| ())?;

		let new_id = self.next_id;
		debug_assert!(!self.requests.contains_key(&new_id));
		match self.next_id.0.checked_add(1) {
			Some(new_id) => self.next_id.0 = new_id,
			None => {
				error!("Overflow in offchain worker HTTP request ID assignment");
				return Err(());
			}
		};
		self.requests.insert(new_id, HttpApiRequest::NotDispatched(request, body_sender));

		Ok(new_id)
	}

	/// Mimics the corresponding method in the offchain API.
	pub fn request_add_header(
		&mut self,
		request_id: HttpRequestId,
		name: &str,
		value: &str
	) -> Result<(), ()> {
		let request = match self.requests.get_mut(&request_id) {
			Some(&mut HttpApiRequest::NotDispatched(ref mut rq, _)) => rq,
			_ => return Err(())
		};

		let name = hyper::header::HeaderName::try_from(name).map_err(drop)?;
		let value = hyper::header::HeaderValue::try_from(value).map_err(drop)?;
		// Note that we're always appending headers and never replacing old values.
		// We assume here that the user knows what they're doing.
		request.headers_mut().append(name, value);
		Ok(())
	}

	/// Mimics the corresponding method in the offchain API.
	pub fn request_write_body(
		&mut self,
		request_id: HttpRequestId,
		chunk: &[u8],
		deadline: Option<Timestamp>
	) -> Result<(), HttpError> {
		// Extract the request from the list.
		// Don't forget to add it back if necessary when returning.
		let mut request = match self.requests.remove(&request_id) {
			None => return Err(HttpError::Invalid),
			Some(r) => r,
		};

		let mut deadline = timestamp::deadline_to_future(deadline);
		// Closure that writes data to a sender, taking the deadline into account. Can return `Ok`
		// (if the body has been written), or `DeadlineReached`, or `IoError`.
		// If `IoError` is returned, don't forget to remove the request from the list.
		let mut poll_sender = move |sender: &mut hyper::body::Sender| -> Result<(), HttpError> {
			let mut when_ready = future::maybe_done(future::poll_fn(|cx| sender.poll_ready(cx)));
			futures::executor::block_on(future::select(&mut when_ready, &mut deadline));
			match when_ready {
				future::MaybeDone::Done(Ok(())) => {}
				future::MaybeDone::Done(Err(_)) => return Err(HttpError::IoError),
				future::MaybeDone::Future(_) |
				future::MaybeDone::Gone => {
					debug_assert!(matches!(deadline, future::MaybeDone::Done(..)));
					return Err(HttpError::DeadlineReached)
				}
			};

			futures::executor::block_on(sender.send_data(hyper::body::Bytes::from(chunk.to_owned())))
				.map_err(|_| {
					error!("HTTP sender refused data despite being ready");
					HttpError::IoError
				})
		};

		loop {
			request = match request {
				HttpApiRequest::NotDispatched(request, sender) => {
					// If the request is not dispatched yet, dispatch it and loop again.
					let _ = self.to_worker.unbounded_send(ApiToWorker::Dispatch {
						id: request_id,
						request
					});
					HttpApiRequest::Dispatched(Some(sender))
				}

				HttpApiRequest::Dispatched(Some(mut sender)) =>
					if !chunk.is_empty() {
						match poll_sender(&mut sender) {
							Err(HttpError::IoError) => return Err(HttpError::IoError),
							other => {
								self.requests.insert(
									request_id,
									HttpApiRequest::Dispatched(Some(sender))
								);
								return other
							}
						}
					} else {
						// Writing an empty body is a hint that we should stop writing. Dropping
						// the sender.
						self.requests.insert(request_id, HttpApiRequest::Dispatched(None));
						return Ok(())
					}

				HttpApiRequest::Response(mut response @ HttpApiRequestRp { sending_body: Some(_), .. }) =>
					if !chunk.is_empty() {
						match poll_sender(response.sending_body.as_mut()
							.expect("Can only enter this match branch if Some; qed")) {
							Err(HttpError::IoError) => return Err(HttpError::IoError),
							other => {
								self.requests.insert(request_id, HttpApiRequest::Response(response));
								return other
							}
						}

					} else {
						// Writing an empty body is a hint that we should stop writing. Dropping
						// the sender.
						self.requests.insert(request_id, HttpApiRequest::Response(HttpApiRequestRp {
							sending_body: None,
							..response
						}));
						return Ok(())
					}

				HttpApiRequest::Fail(_) =>
					// If the request has already failed, return without putting back the request
					// in the list.
					return Err(HttpError::IoError),

				v @ HttpApiRequest::Dispatched(None) |
				v @ HttpApiRequest::Response(HttpApiRequestRp { sending_body: None, .. }) => {
					// We have already finished sending this body.
					self.requests.insert(request_id, v);
					return Err(HttpError::Invalid)
				}
			}
		}
	}

	/// Mimics the corresponding method in the offchain API.
	pub fn response_wait(
		&mut self,
		ids: &[HttpRequestId],
		deadline: Option<Timestamp>
	) -> Vec<HttpRequestStatus> {
		// First of all, dispatch all the non-dispatched requests and drop all senders so that the
		// user can't write anymore data.
		for id in ids {
			match self.requests.get_mut(id) {
				Some(HttpApiRequest::NotDispatched(_, _)) => {}
				Some(HttpApiRequest::Dispatched(sending_body)) |
				Some(HttpApiRequest::Response(HttpApiRequestRp { sending_body, .. })) => {
					let _ = sending_body.take();
					continue
				}
				_ => continue
			};

			let (request, _sender) = match self.requests.remove(id) {
				Some(HttpApiRequest::NotDispatched(rq, s)) => (rq, s),
				_ => unreachable!("we checked for NotDispatched above; qed")
			};

			let _ = self.to_worker.unbounded_send(ApiToWorker::Dispatch {
				id: *id,
				request
			});

			// We also destroy the sender in order to forbid writing more data.
			self.requests.insert(*id, HttpApiRequest::Dispatched(None));
		}

		let mut deadline = timestamp::deadline_to_future(deadline);

		loop {
			// Within that loop, first try to see if we have all the elements for a response.
			// This includes the situation where the deadline is reached.
			{
				let mut output = Vec::with_capacity(ids.len());
				let mut must_wait_more = false;
				for id in ids {
					output.push(match self.requests.get(id) {
						None => HttpRequestStatus::Invalid,
						Some(HttpApiRequest::NotDispatched(_, _)) =>
							unreachable!("we replaced all the NotDispatched with Dispatched earlier; qed"),
						Some(HttpApiRequest::Dispatched(_)) => {
							must_wait_more = true;
							HttpRequestStatus::DeadlineReached
						},
						Some(HttpApiRequest::Fail(_)) => HttpRequestStatus::IoError,
						Some(HttpApiRequest::Response(HttpApiRequestRp { status_code, .. })) =>
							HttpRequestStatus::Finished(status_code.as_u16()),
					});
				}
				debug_assert_eq!(output.len(), ids.len());

				// Are we ready to call `return`?
				let is_done = if let future::MaybeDone::Done(_) = deadline {
					true
				} else {
					!must_wait_more
				};

				if is_done {
					// Requests in "fail" mode are purged before returning.
					debug_assert_eq!(output.len(), ids.len());
					for n in (0..ids.len()).rev() {
						if let HttpRequestStatus::IoError = output[n] {
							self.requests.remove(&ids[n]);
						}
					}
					return output
				}
			}

			// Grab next message from the worker. We call `continue` if deadline is reached so that
			// we loop back and `return`.
			let next_message = {
				let mut next_msg = future::maybe_done(self.from_worker.next());
				futures::executor::block_on(future::select(&mut next_msg, &mut deadline));
				if let future::MaybeDone::Done(msg) = next_msg {
					msg
				} else {
					debug_assert!(matches!(deadline, future::MaybeDone::Done(..)));
					continue
				}
			};

			// Update internal state based on received message.
			match next_message {
				Some(WorkerToApi::Response { id, status_code, headers, body }) =>
					match self.requests.remove(&id) {
						Some(HttpApiRequest::Dispatched(sending_body)) => {
							self.requests.insert(id, HttpApiRequest::Response(HttpApiRequestRp {
								sending_body,
								status_code,
								headers,
								body: body.fuse(),
								current_read_chunk: None,
							}));
						}
						None => {}	// can happen if we detected an IO error when sending the body
						_ => error!("State mismatch between the API and worker"),
					}

				Some(WorkerToApi::Fail { id, error }) =>
					match self.requests.remove(&id) {
						Some(HttpApiRequest::Dispatched(_)) => {
							self.requests.insert(id, HttpApiRequest::Fail(error));
						}
						None => {}	// can happen if we detected an IO error when sending the body
						_ => error!("State mismatch between the API and worker"),
					}

				None => {
					error!("Worker has crashed");
					return ids.iter().map(|_| HttpRequestStatus::IoError).collect()
				}
			}

		}
	}

	/// Mimics the corresponding method in the offchain API.
	pub fn response_headers(
		&mut self,
		request_id: HttpRequestId
	) -> Vec<(Vec<u8>, Vec<u8>)> {
		// Do an implicit non-blocking wait on the request.
		let _ = self.response_wait(&[request_id], Some(timestamp::now()));

		let headers = match self.requests.get(&request_id) {
			Some(HttpApiRequest::Response(HttpApiRequestRp { headers, .. })) => headers,
			_ => return Vec::new()
		};

		headers
			.iter()
			.map(|(name, value)| (name.as_str().as_bytes().to_owned(), value.as_bytes().to_owned()))
			.collect()
	}

	/// Mimics the corresponding method in the offchain API.
	pub fn response_read_body(
		&mut self,
		request_id: HttpRequestId,
		buffer: &mut [u8],
		deadline: Option<Timestamp>
	) -> Result<usize, HttpError> {
		// Do an implicit wait on the request.
		let _ = self.response_wait(&[request_id], deadline);

		// Remove the request from the list and handle situations where the request is invalid or
		// in the wrong state.
		let mut response = match self.requests.remove(&request_id) {
			Some(HttpApiRequest::Response(r)) => r,
			// Because we called `response_wait` above, we know that the deadline has been reached
			// and we still haven't received a response.
			Some(rq @ HttpApiRequest::Dispatched(_)) => {
				self.requests.insert(request_id, rq);
				return Err(HttpError::DeadlineReached)
			},
			// The request has failed.
			Some(HttpApiRequest::Fail { .. }) =>
				return Err(HttpError::IoError),
			// Request hasn't been dispatched yet; reading the body is invalid.
			Some(rq @ HttpApiRequest::NotDispatched(_, _)) => {
				self.requests.insert(request_id, rq);
				return Err(HttpError::Invalid)
			}
			None => return Err(HttpError::Invalid)
		};

		// Convert the deadline into a `Future` that resolves when the deadline is reached.
		let mut deadline = timestamp::deadline_to_future(deadline);

		loop {
			// First read from `current_read_chunk`.
			if let Some(mut current_read_chunk) = response.current_read_chunk.take() {
				match current_read_chunk.read(buffer) {
					Ok(0) => {}
					Ok(n) => {
						self.requests.insert(request_id, HttpApiRequest::Response(HttpApiRequestRp {
							current_read_chunk: Some(current_read_chunk),
							.. response
						}));
						return Ok(n)
					},
					Err(err) => {
						// This code should never be reached unless there's a logic error somewhere.
						error!("Failed to read from current read chunk: {:?}", err);
						return Err(HttpError::IoError)
					}
				}
			}

			// If we reach here, that means the `current_read_chunk` is empty and needs to be
			// filled with a new chunk from `body`. We block on either the next body or the
			// deadline.
			let mut next_body = future::maybe_done(response.body.next());
			futures::executor::block_on(future::select(&mut next_body, &mut deadline));

			if let future::MaybeDone::Done(next_body) = next_body {
				match next_body {
					Some(Ok(chunk)) => response.current_read_chunk = Some(chunk.reader()),
					Some(Err(_)) => return Err(HttpError::IoError),
					None => return Ok(0),  // eof
				}
			}

			if let future::MaybeDone::Done(_) = deadline {
				self.requests.insert(request_id, HttpApiRequest::Response(response));
				return Err(HttpError::DeadlineReached)
			}
		}
	}
}

impl fmt::Debug for HttpApi {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		f.debug_list()
			.entries(self.requests.iter())
			.finish()
	}
}

impl fmt::Debug for HttpApiRequest {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		match self {
			HttpApiRequest::NotDispatched(_, _) =>
				f.debug_tuple("HttpApiRequest::NotDispatched").finish(),
			HttpApiRequest::Dispatched(_) =>
				f.debug_tuple("HttpApiRequest::Dispatched").finish(),
			HttpApiRequest::Response(HttpApiRequestRp { status_code, headers, .. }) =>
				f.debug_tuple("HttpApiRequest::Response").field(status_code).field(headers).finish(),
			HttpApiRequest::Fail(err) =>
				f.debug_tuple("HttpApiRequest::Fail").field(err).finish(),
		}
	}
}

/// Message send from the API to the worker.
enum ApiToWorker {
	/// Dispatches a new HTTP request.
	Dispatch {
		/// ID to send back when the response comes back.
		id: HttpRequestId,
		/// Request to start executing.
		request: hyper::Request<hyper::Body>,
	}
}

/// Message send from the API to the worker.
enum WorkerToApi {
	/// A request has succeeded.
	Response {
		/// The ID that was passed to the worker.
		id: HttpRequestId,
		/// Status code of the response.
		status_code: hyper::StatusCode,
		/// Headers of the response.
		headers: hyper::HeaderMap,
		/// Body of the response, as a channel of `Chunk` objects.
		/// We send the body back through a channel instead of returning the hyper `Body` object
		/// because we don't want the `HttpApi` to have to drive the reading.
		/// Instead, reading an item from the channel will notify the worker task, which will push
		/// the next item.
		/// Can also be used to send an error, in case an error happend on the HTTP socket. After
		/// an error is sent, the channel will close.
		body: mpsc::Receiver<Result<hyper::body::Bytes, hyper::Error>>,
	},
	/// A request has failed because of an error. The request is then no longer valid.
	Fail {
		/// The ID that was passed to the worker.
		id: HttpRequestId,
		/// Error that happened.
		error: hyper::Error,
	},
}

/// Must be continuously polled for the [`HttpApi`] to properly work.
pub struct HttpWorker {
	/// Used to sends messages to the `HttpApi`.
	to_api: TracingUnboundedSender<WorkerToApi>,
	/// Used to receive messages from the `HttpApi`.
	from_api: TracingUnboundedReceiver<ApiToWorker>,
	/// The engine that runs HTTP requests.
	http_client: Arc<HyperClient<HttpsConnector<client::HttpConnector>, Body>>,
	/// HTTP requests that are being worked on by the engine.
	requests: Vec<(HttpRequestId, HttpWorkerRequest)>,
}

/// HTTP request being processed by the worker.
enum HttpWorkerRequest {
	/// Request has been dispatched and is waiting for a response from the Internet.
	Dispatched(hyper::client::ResponseFuture),
	/// Progressively reading the body of the response and sending it to the channel.
	ReadBody {
		/// Body to read `Chunk`s from. Only used if the channel is ready to accept data.
		body: hyper::Body,
		/// Channel to the [`HttpApi`] where we send the chunks to.
		tx: mpsc::Sender<Result<hyper::body::Bytes, hyper::Error>>,
	},
}

impl Future for HttpWorker {
	type Output = ();

	fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
		// Reminder: this is continuously run in the background.

		// We use a `me` variable because the compiler isn't smart enough to allow borrowing
		// multiple fields at once through a `Deref`.
		let me = &mut *self;

		// We remove each element from `requests` one by one and add them back only if necessary.
		for n in (0..me.requests.len()).rev() {
			let (id, request) = me.requests.swap_remove(n);
			match request {
				HttpWorkerRequest::Dispatched(mut future) => {
					// Check for an HTTP response from the Internet.
					let response = match Future::poll(Pin::new(&mut future), cx) {
						Poll::Pending => {
							me.requests.push((id, HttpWorkerRequest::Dispatched(future)));
							continue
						},
						Poll::Ready(Ok(response)) => response,
						Poll::Ready(Err(error)) => {
							let _ = me.to_api.unbounded_send(WorkerToApi::Fail { id, error });
							continue;		// don't insert the request back
						}
					};

					// We received a response! Decompose it into its parts.
					let (head, body) = response.into_parts();
					let (status_code, headers) = (head.status, head.headers);

					let (body_tx, body_rx) = mpsc::channel(3);
					let _ = me.to_api.unbounded_send(WorkerToApi::Response {
						id,
						status_code,
						headers,
						body: body_rx,
					});

					me.requests.push((id, HttpWorkerRequest::ReadBody { body, tx: body_tx }));
					cx.waker().wake_by_ref();	// reschedule in order to poll the new future
					continue
				}

				HttpWorkerRequest::ReadBody { mut body, mut tx } => {
					// Before reading from the HTTP response, check that `tx` is ready to accept
					// a new chunk.
					match tx.poll_ready(cx) {
						Poll::Ready(Ok(())) => {}
						Poll::Ready(Err(_)) => continue,  // don't insert the request back
						Poll::Pending => {
							me.requests.push((id, HttpWorkerRequest::ReadBody { body, tx }));
							continue
						}
					}

					// `tx` is ready. Read a chunk from the socket and send it to the channel.
					match Stream::poll_next(Pin::new(&mut body), cx) {
						Poll::Ready(Some(Ok(chunk))) => {
							let _ = tx.start_send(Ok(chunk));
							me.requests.push((id, HttpWorkerRequest::ReadBody { body, tx }));
							cx.waker().wake_by_ref();	// reschedule in order to continue reading
						}
						Poll::Ready(Some(Err(err))) => {
							let _ = tx.start_send(Err(err));
							// don't insert the request back
						},
						Poll::Ready(None) => {}		// EOF; don't insert the request back
						Poll::Pending => {
							me.requests.push((id, HttpWorkerRequest::ReadBody { body, tx }));
						},
					}
				}
			}
		}

		// Check for messages coming from the [`HttpApi`].
		match Stream::poll_next(Pin::new(&mut me.from_api), cx) {
			Poll::Pending => {},
			Poll::Ready(None) => return Poll::Ready(()),	// stops the worker
			Poll::Ready(Some(ApiToWorker::Dispatch { id, request })) => {
				let future = me.http_client.request(request);
				debug_assert!(me.requests.iter().all(|(i, _)| *i != id));
				me.requests.push((id, HttpWorkerRequest::Dispatched(future)));
				cx.waker().wake_by_ref();	// reschedule the task to poll the request
			}
		}

		Poll::Pending
	}
}

impl fmt::Debug for HttpWorker {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		f.debug_list()
			.entries(self.requests.iter())
			.finish()
	}
}

impl fmt::Debug for HttpWorkerRequest {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		match self {
			HttpWorkerRequest::Dispatched(_) =>
				f.debug_tuple("HttpWorkerRequest::Dispatched").finish(),
			HttpWorkerRequest::ReadBody { .. } =>
				f.debug_tuple("HttpWorkerRequest::Response").finish(),
		}
	}
}

#[cfg(test)]
mod tests {
	use core::convert::Infallible;
	use crate::api::timestamp;
	use super::{http, SharedClient};
	use sp_core::offchain::{HttpError, HttpRequestId, HttpRequestStatus, Duration};
	use futures::future;
	use lazy_static::lazy_static;
	
	// Using lazy_static to avoid spawning lots of different SharedClients,
	// as spawning a SharedClient is CPU-intensive and opens lots of fds.
	lazy_static! {
		static ref SHARED_CLIENT: SharedClient = SharedClient::new();
	}

	// Returns an `HttpApi` whose worker is ran in the background, and a `SocketAddr` to an HTTP
	// server that runs in the background as well.
	macro_rules! build_api_server {
		() => {{
			let hyper_client = SHARED_CLIENT.clone();
			let (api, worker) = http(hyper_client.clone());

			let (addr_tx, addr_rx) = std::sync::mpsc::channel();
			std::thread::spawn(move || {
				let mut rt = tokio::runtime::Runtime::new().unwrap();
				let worker = rt.spawn(worker);
				let server = rt.spawn(async move {
					let server = hyper::Server::bind(&"127.0.0.1:0".parse().unwrap())
						.serve(hyper::service::make_service_fn(|_| { async move {
							Ok::<_, Infallible>(hyper::service::service_fn(move |_req| async move {
								Ok::<_, Infallible>(
									hyper::Response::new(hyper::Body::from("Hello World!"))
								)
							}))
						}}));
					let _ = addr_tx.send(server.local_addr());
					server.await.map_err(drop)
				});
				let _ = rt.block_on(future::join(worker, server));
			});
			(api, addr_rx.recv().unwrap())
		}};
	}

	#[test]
	fn basic_localhost() {
		let deadline = timestamp::now().add(Duration::from_millis(10_000));

		// Performs an HTTP query to a background HTTP server.

		let (mut api, addr) = build_api_server!();

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_write_body(id, &[], Some(deadline)).unwrap();

		match api.response_wait(&[id], Some(deadline))[0] {
			HttpRequestStatus::Finished(200) => {},
			v => panic!("Connecting to localhost failed: {:?}", v)
		}

		let headers = api.response_headers(id);
		assert!(headers.iter().any(|(h, _)| h.eq_ignore_ascii_case(b"Date")));

		let mut buf = vec![0; 2048];
		let n = api.response_read_body(id, &mut buf, Some(deadline)).unwrap();
		assert_eq!(&buf[..n], b"Hello World!");
	}

	#[test]
	fn request_start_invalid_call() {
		let (mut api, addr) = build_api_server!();

		match api.request_start("\0", &format!("http://{}", addr)) {
			Err(()) => {}
			Ok(_) => panic!()
		};

		match api.request_start("GET", "http://\0localhost") {
			Err(()) => {}
			Ok(_) => panic!()
		};
	}

	#[test]
	fn request_add_header_invalid_call() {
		let (mut api, addr) = build_api_server!();

		match api.request_add_header(HttpRequestId(0xdead), "Foo", "bar") {
			Err(()) => {}
			Ok(_) => panic!()
		};

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		match api.request_add_header(id, "\0", "bar") {
			Err(()) => {}
			Ok(_) => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		match api.request_add_header(id, "Foo", "\0") {
			Err(()) => {}
			Ok(_) => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_add_header(id, "Foo", "Bar").unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		match api.request_add_header(id, "Foo2", "Bar") {
			Err(()) => {}
			Ok(_) => panic!()
		};

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		api.response_headers(id);
		match api.request_add_header(id, "Foo2", "Bar") {
			Err(()) => {}
			Ok(_) => panic!()
		};

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		api.response_read_body(id, &mut [], None).unwrap();
		match api.request_add_header(id, "Foo2", "Bar") {
			Err(()) => {}
			Ok(_) => panic!()
		};
	}

	#[test]
	fn request_write_body_invalid_call() {
		let (mut api, addr) = build_api_server!();

		match api.request_write_body(HttpRequestId(0xdead), &[1, 2, 3], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		match api.request_write_body(HttpRequestId(0xdead), &[], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		api.request_write_body(id, &[], None).unwrap();
		match api.request_write_body(id, &[], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		api.request_write_body(id, &[], None).unwrap();
		match api.request_write_body(id, &[1, 2, 3, 4], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		api.response_wait(&[id], None);
		match api.request_write_body(id, &[], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_write_body(id, &[1, 2, 3, 4], None).unwrap();
		api.response_wait(&[id], None);
		match api.request_write_body(id, &[1, 2, 3, 4], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.response_headers(id);
		match api.request_write_body(id, &[1, 2, 3, 4], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		api.response_headers(id);
		match api.request_write_body(id, &[], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.response_read_body(id, &mut [], None).unwrap();
		match api.request_write_body(id, &[1, 2, 3, 4], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.response_read_body(id, &mut [], None).unwrap();
		match api.request_write_body(id, &[], None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		};
	}

	#[test]
	fn response_headers_invalid_call() {
		let (mut api, addr) = build_api_server!();
		assert_eq!(api.response_headers(HttpRequestId(0xdead)), &[]);

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		assert_eq!(api.response_headers(id), &[]);

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_write_body(id, &[], None).unwrap();
		while api.response_headers(id).is_empty() {
			std::thread::sleep(std::time::Duration::from_millis(100));
		}

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		api.response_wait(&[id], None);
		assert_ne!(api.response_headers(id), &[]);

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		let mut buf = [0; 128];
		while api.response_read_body(id, &mut buf, None).unwrap() != 0 {}
		assert_eq!(api.response_headers(id), &[]);
	}

	#[test]
	fn response_header_invalid_call() {
		let (mut api, addr) = build_api_server!();

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		assert_eq!(api.response_headers(id), &[]);

		let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();
		api.request_add_header(id, "Foo", "Bar").unwrap();
		assert_eq!(api.response_headers(id), &[]);

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		api.request_add_header(id, "Foo", "Bar").unwrap();
		api.request_write_body(id, &[], None).unwrap();
		// Note: this test actually sends out the request, and is supposed to test a situation
		// where we haven't received any response yet. This test can theoretically fail if the
		// HTTP response comes back faster than the kernel schedules our thread, but that is highly
		// unlikely.
		assert_eq!(api.response_headers(id), &[]);
	}

	#[test]
	fn response_read_body_invalid_call() {
		let (mut api, addr) = build_api_server!();
		let mut buf = [0; 512];

		match api.response_read_body(HttpRequestId(0xdead), &mut buf, None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		}

		let id = api.request_start("GET", &format!("http://{}", addr)).unwrap();
		while api.response_read_body(id, &mut buf, None).unwrap() != 0 {}
		match api.response_read_body(id, &mut buf, None) {
			Err(HttpError::Invalid) => {}
			_ => panic!()
		}
	}

	#[test]
	fn fuzzing() {
		// Uses the API in random ways to try to trigger panics.
		// Doesn't test some paths, such as waiting for multiple requests. Also doesn't test what
		// happens if the server force-closes our socket.

		let (mut api, addr) = build_api_server!();

		for _ in 0..50 {
			let id = api.request_start("POST", &format!("http://{}", addr)).unwrap();

			for _ in 0..250 {
				match rand::random::<u8>() % 6 {
					0 => { let _ = api.request_add_header(id, "Foo", "Bar"); }
					1 => { let _ = api.request_write_body(id, &[1, 2, 3, 4], None); }
					2 => { let _ = api.request_write_body(id, &[], None); }
					3 => { let _ = api.response_wait(&[id], None); }
					4 => { let _ = api.response_headers(id); }
					5 => {
						let mut buf = [0; 512];
						let _ = api.response_read_body(id, &mut buf, None);
					}
					6 ..= 255 => unreachable!()
				}
			}
		}
	}
}