1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use num_traits::Float;
use crate::{uniform::SampleUniform, Distribution, Uniform};
use rand::Rng;
/// Samples uniformly from the edge of the unit circle in two dimensions.
///
/// Implemented via a method by von Neumann[^1].
///
///
/// # Example
///
/// ```
/// use rand_distr::{UnitCircle, Distribution};
///
/// let v: [f64; 2] = UnitCircle.sample(&mut rand::thread_rng());
/// println!("{:?} is from the unit circle.", v)
/// ```
///
/// [^1]: von Neumann, J. (1951) [*Various Techniques Used in Connection with
/// Random Digits.*](https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf)
/// NBS Appl. Math. Ser., No. 12. Washington, DC: U.S. Government Printing
/// Office, pp. 36-38.
#[derive(Clone, Copy, Debug)]
pub struct UnitCircle;
impl<F: Float + SampleUniform> Distribution<[F; 2]> for UnitCircle {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; 2] {
let uniform = Uniform::new(F::from(-1.).unwrap(), F::from(1.).unwrap());
let mut x1;
let mut x2;
let mut sum;
loop {
x1 = uniform.sample(rng);
x2 = uniform.sample(rng);
sum = x1 * x1 + x2 * x2;
if sum < F::from(1.).unwrap() {
break;
}
}
let diff = x1 * x1 - x2 * x2;
[diff / sum, F::from(2.).unwrap() * x1 * x2 / sum]
}
}
#[cfg(test)]
mod tests {
use super::UnitCircle;
use crate::Distribution;
#[test]
fn norm() {
let mut rng = crate::test::rng(1);
for _ in 0..1000 {
let x: [f64; 2] = UnitCircle.sample(&mut rng);
assert_almost_eq!(x[0] * x[0] + x[1] * x[1], 1., 1e-15);
}
}
}