1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The normal and derived distributions.
use crate::utils::ziggurat;
use num_traits::Float;
use crate::{ziggurat_tables, Distribution, Open01};
use rand::Rng;
use core::fmt;
/// Samples floating-point numbers according to the normal distribution
/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
/// `Normal::new(0.0, 1.0)` but faster.
///
/// See `Normal` for the general normal distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::StandardNormal;
///
/// let val: f64 = thread_rng().sample(StandardNormal);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct StandardNormal;
impl Distribution<f32> for StandardNormal {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
// TODO: use optimal 32-bit implementation
let x: f64 = self.sample(rng);
x as f32
}
}
impl Distribution<f64> for StandardNormal {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x * x / 2.0).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 {
// compute a random number in the tail by hand
// strange initial conditions, because the loop is not
// do-while, so the condition should be true on the first
// run, they get overwritten anyway (0 < 1, so these are
// good).
let mut x = 1.0f64;
let mut y = 0.0f64;
while -2.0 * y < x * x {
let x_: f64 = rng.sample(Open01);
let y_: f64 = rng.sample(Open01);
x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
y = y_.ln();
}
if u < 0.0 {
x - ziggurat_tables::ZIG_NORM_R
} else {
ziggurat_tables::ZIG_NORM_R - x
}
}
ziggurat(
rng,
true, // this is symmetric
&ziggurat_tables::ZIG_NORM_X,
&ziggurat_tables::ZIG_NORM_F,
pdf,
zero_case,
)
}
}
/// The normal distribution `N(mean, std_dev**2)`.
///
/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`]
/// for more details.
///
/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
/// standard deviation 1.
///
/// # Example
///
/// ```
/// use rand_distr::{Normal, Distribution};
///
/// // mean 2, standard deviation 3
/// let normal = Normal::new(2.0, 3.0).unwrap();
/// let v = normal.sample(&mut rand::thread_rng());
/// println!("{} is from a N(2, 9) distribution", v)
/// ```
///
/// [`StandardNormal`]: crate::StandardNormal
#[derive(Clone, Copy, Debug)]
pub struct Normal<F>
where F: Float, StandardNormal: Distribution<F>
{
mean: F,
std_dev: F,
}
/// Error type returned from `Normal::new` and `LogNormal::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// The mean value is too small (log-normal samples must be positive)
MeanTooSmall,
/// The standard deviation or other dispersion parameter is not finite.
BadVariance,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::MeanTooSmall => "mean < 0 or NaN in log-normal distribution",
Error::BadVariance => "variation parameter is non-finite in (log)normal distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
impl<F> Normal<F>
where F: Float, StandardNormal: Distribution<F>
{
/// Construct, from mean and standard deviation
///
/// Parameters:
///
/// - mean (`μ`, unrestricted)
/// - standard deviation (`σ`, must be finite)
#[inline]
pub fn new(mean: F, std_dev: F) -> Result<Normal<F>, Error> {
if !std_dev.is_finite() {
return Err(Error::BadVariance);
}
Ok(Normal { mean, std_dev })
}
/// Construct, from mean and coefficient of variation
///
/// Parameters:
///
/// - mean (`μ`, unrestricted)
/// - coefficient of variation (`cv = abs(σ / μ)`)
#[inline]
pub fn from_mean_cv(mean: F, cv: F) -> Result<Normal<F>, Error> {
if !cv.is_finite() || cv < F::zero() {
return Err(Error::BadVariance);
}
let std_dev = cv * mean;
Ok(Normal { mean, std_dev })
}
/// Sample from a z-score
///
/// This may be useful for generating correlated samples `x1` and `x2`
/// from two different distributions, as follows.
/// ```
/// # use rand::prelude::*;
/// # use rand_distr::{Normal, StandardNormal};
/// let mut rng = thread_rng();
/// let z = StandardNormal.sample(&mut rng);
/// let x1 = Normal::new(0.0, 1.0).unwrap().from_zscore(z);
/// let x2 = Normal::new(2.0, -3.0).unwrap().from_zscore(z);
/// ```
#[inline]
pub fn from_zscore(&self, zscore: F) -> F {
self.mean + self.std_dev * zscore
}
/// Returns the mean (`μ`) of the distribution.
pub fn mean(&self) -> F {
self.mean
}
/// Returns the standard deviation (`σ`) of the distribution.
pub fn std_dev(&self) -> F {
self.std_dev
}
}
impl<F> Distribution<F> for Normal<F>
where F: Float, StandardNormal: Distribution<F>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
self.from_zscore(rng.sample(StandardNormal))
}
}
/// The log-normal distribution `ln N(mean, std_dev**2)`.
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
/// distributed.
///
/// # Example
///
/// ```
/// use rand_distr::{LogNormal, Distribution};
///
/// // mean 2, standard deviation 3
/// let log_normal = LogNormal::new(2.0, 3.0).unwrap();
/// let v = log_normal.sample(&mut rand::thread_rng());
/// println!("{} is from an ln N(2, 9) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct LogNormal<F>
where F: Float, StandardNormal: Distribution<F>
{
norm: Normal<F>,
}
impl<F> LogNormal<F>
where F: Float, StandardNormal: Distribution<F>
{
/// Construct, from (log-space) mean and standard deviation
///
/// Parameters are the "standard" log-space measures (these are the mean
/// and standard deviation of the logarithm of samples):
///
/// - `mu` (`μ`, unrestricted) is the mean of the underlying distribution
/// - `sigma` (`σ`, must be finite) is the standard deviation of the
/// underlying Normal distribution
#[inline]
pub fn new(mu: F, sigma: F) -> Result<LogNormal<F>, Error> {
let norm = Normal::new(mu, sigma)?;
Ok(LogNormal { norm })
}
/// Construct, from (linear-space) mean and coefficient of variation
///
/// Parameters are linear-space measures:
///
/// - mean (`μ > 0`) is the (real) mean of the distribution
/// - coefficient of variation (`cv = σ / μ`, requiring `cv ≥ 0`) is a
/// standardized measure of dispersion
///
/// As a special exception, `μ = 0, cv = 0` is allowed (samples are `-inf`).
#[inline]
pub fn from_mean_cv(mean: F, cv: F) -> Result<LogNormal<F>, Error> {
if cv == F::zero() {
let mu = mean.ln();
let norm = Normal::new(mu, F::zero()).unwrap();
return Ok(LogNormal { norm });
}
if !(mean > F::zero()) {
return Err(Error::MeanTooSmall);
}
if !(cv >= F::zero()) {
return Err(Error::BadVariance);
}
// Using X ~ lognormal(μ, σ), CV² = Var(X) / E(X)²
// E(X) = exp(μ + σ² / 2) = exp(μ) × exp(σ² / 2)
// Var(X) = exp(2μ + σ²)(exp(σ²) - 1) = E(X)² × (exp(σ²) - 1)
// but Var(X) = (CV × E(X))² so CV² = exp(σ²) - 1
// thus σ² = log(CV² + 1)
// and exp(μ) = E(X) / exp(σ² / 2) = E(X) / sqrt(CV² + 1)
let a = F::one() + cv * cv; // e
let mu = F::from(0.5).unwrap() * (mean * mean / a).ln();
let sigma = a.ln().sqrt();
let norm = Normal::new(mu, sigma)?;
Ok(LogNormal { norm })
}
/// Sample from a z-score
///
/// This may be useful for generating correlated samples `x1` and `x2`
/// from two different distributions, as follows.
/// ```
/// # use rand::prelude::*;
/// # use rand_distr::{LogNormal, StandardNormal};
/// let mut rng = thread_rng();
/// let z = StandardNormal.sample(&mut rng);
/// let x1 = LogNormal::from_mean_cv(3.0, 1.0).unwrap().from_zscore(z);
/// let x2 = LogNormal::from_mean_cv(2.0, 4.0).unwrap().from_zscore(z);
/// ```
#[inline]
pub fn from_zscore(&self, zscore: F) -> F {
self.norm.from_zscore(zscore).exp()
}
}
impl<F> Distribution<F> for LogNormal<F>
where F: Float, StandardNormal: Distribution<F>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
self.norm.sample(rng).exp()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_normal() {
let norm = Normal::new(10.0, 10.0).unwrap();
let mut rng = crate::test::rng(210);
for _ in 0..1000 {
norm.sample(&mut rng);
}
}
#[test]
fn test_normal_cv() {
let norm = Normal::from_mean_cv(1024.0, 1.0 / 256.0).unwrap();
assert_eq!((norm.mean, norm.std_dev), (1024.0, 4.0));
}
#[test]
fn test_normal_invalid_sd() {
assert!(Normal::from_mean_cv(10.0, -1.0).is_err());
}
#[test]
fn test_log_normal() {
let lnorm = LogNormal::new(10.0, 10.0).unwrap();
let mut rng = crate::test::rng(211);
for _ in 0..1000 {
lnorm.sample(&mut rng);
}
}
#[test]
fn test_log_normal_cv() {
let lnorm = LogNormal::from_mean_cv(0.0, 0.0).unwrap();
assert_eq!((lnorm.norm.mean, lnorm.norm.std_dev), (-core::f64::INFINITY, 0.0));
let lnorm = LogNormal::from_mean_cv(1.0, 0.0).unwrap();
assert_eq!((lnorm.norm.mean, lnorm.norm.std_dev), (0.0, 0.0));
let e = core::f64::consts::E;
let lnorm = LogNormal::from_mean_cv(e.sqrt(), (e - 1.0).sqrt()).unwrap();
assert_almost_eq!(lnorm.norm.mean, 0.0, 2e-16);
assert_almost_eq!(lnorm.norm.std_dev, 1.0, 2e-16);
let lnorm = LogNormal::from_mean_cv(e.powf(1.5), (e - 1.0).sqrt()).unwrap();
assert_almost_eq!(lnorm.norm.mean, 1.0, 1e-15);
assert_eq!(lnorm.norm.std_dev, 1.0);
}
#[test]
fn test_log_normal_invalid_sd() {
assert!(LogNormal::from_mean_cv(-1.0, 1.0).is_err());
assert!(LogNormal::from_mean_cv(0.0, 1.0).is_err());
assert!(LogNormal::from_mean_cv(1.0, -1.0).is_err());
}
}