1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
// Copyright 2016 - 2018 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::kernel::GemmKernel;
use crate::kernel::GemmSelect;
use crate::kernel::{U4, U8};
use crate::archparam;


#[cfg(target_arch="x86")]
use core::arch::x86::*;
#[cfg(target_arch="x86_64")]
use core::arch::x86_64::*;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
use crate::x86::{FusedMulAdd, AvxMulAdd, SMultiplyAdd};

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelAvx;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelFma;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelSse2;
struct KernelFallback;

type T = f32;

/// Detect which implementation to use and select it using the selector's
/// .select(Kernel) method.
///
/// This function is called one or more times during a whole program's
/// execution, it may be called for each gemm kernel invocation or fewer times.
#[inline]
pub(crate) fn detect<G>(selector: G) where G: GemmSelect<T> {
    // dispatch to specific compiled versions
    #[cfg(any(target_arch="x86", target_arch="x86_64"))]
    {
        if is_x86_feature_detected_!("fma") {
            return selector.select(KernelFma);
        } else if is_x86_feature_detected_!("avx") {
            return selector.select(KernelAvx);
        } else if is_x86_feature_detected_!("sse2") {
            return selector.select(KernelSse2);
        }
    }
    return selector.select(KernelFallback);
}

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
macro_rules! loop_m { ($i:ident, $e:expr) => { loop8!($i, $e) }; }
#[cfg(test)]
macro_rules! loop_n { ($j:ident, $e:expr) => { loop8!($j, $e) }; }

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelAvx {
    type Elem = T;

    type MRTy = U8;
    type NRTy = U8;

    #[inline(always)]
    fn align_to() -> usize { 32 }

    #[inline(always)]
    fn always_masked() -> bool { false }

    #[inline(always)]
    fn nc() -> usize { archparam::S_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::S_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::S_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T, rsc: isize, csc: isize) {
        kernel_target_avx(k, alpha, a, b, beta, c, rsc, csc)
    }
}

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelFma {
    type Elem = T;

    type MRTy = <KernelAvx as GemmKernel>::MRTy;
    type NRTy = <KernelAvx as GemmKernel>::NRTy;

    #[inline(always)]
    fn align_to() -> usize { KernelAvx::align_to() }

    #[inline(always)]
    fn always_masked() -> bool { KernelAvx::always_masked() }

    #[inline(always)]
    fn nc() -> usize { archparam::S_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::S_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::S_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T, rsc: isize, csc: isize) {
        kernel_target_fma(k, alpha, a, b, beta, c, rsc, csc)
    }
}

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelSse2 {
    type Elem = T;

    type MRTy = <KernelFallback as GemmKernel>::MRTy;
    type NRTy = <KernelFallback as GemmKernel>::NRTy;

    #[inline(always)]
    fn align_to() -> usize { 16 }

    #[inline(always)]
    fn always_masked() -> bool { KernelFallback::always_masked() }

    #[inline(always)]
    fn nc() -> usize { archparam::S_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::S_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::S_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T, rsc: isize, csc: isize) {
        kernel_target_sse2(k, alpha, a, b, beta, c, rsc, csc)
    }
}

impl GemmKernel for KernelFallback {
    type Elem = T;

    type MRTy = U8;
    type NRTy = U4;

    #[inline(always)]
    fn align_to() -> usize { 0 }

    #[inline(always)]
    fn always_masked() -> bool { true }

    #[inline(always)]
    fn nc() -> usize { archparam::S_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::S_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::S_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T, rsc: isize, csc: isize) {
        kernel_fallback_impl(k, alpha, a, b, beta, c, rsc, csc)
    }
}

// no inline for unmasked kernels
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="fma")]
unsafe fn kernel_target_fma(k: usize, alpha: T, a: *const T, b: *const T,
                            beta: T, c: *mut T, rsc: isize, csc: isize)
{
    kernel_x86_avx::<FusedMulAdd>(k, alpha, a, b, beta, c, rsc, csc)
}

// no inline for unmasked kernels
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="avx")]
unsafe fn kernel_target_avx(k: usize, alpha: T, a: *const T, b: *const T,
                            beta: T, c: *mut T, rsc: isize, csc: isize)
{
    kernel_x86_avx::<AvxMulAdd>(k, alpha, a, b, beta, c, rsc, csc)
}

#[inline]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="sse2")]
unsafe fn kernel_target_sse2(k: usize, alpha: T, a: *const T, b: *const T,
                             beta: T, c: *mut T, rsc: isize, csc: isize)
{
    kernel_fallback_impl(k, alpha, a, b, beta, c, rsc, csc)
}

#[inline(always)]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
unsafe fn kernel_x86_avx<MA>(k: usize, alpha: T, a: *const T, b: *const T,
                             beta: T, c: *mut T, rsc: isize, csc: isize)
    where MA: SMultiplyAdd,
{
    const MR: usize = KernelAvx::MR;
    const NR: usize = KernelAvx::NR;

    debug_assert_ne!(k, 0);

    let mut ab = [_mm256_setzero_ps(); MR];

    // this kernel can operate in either transposition (C = A B or C^T = B^T A^T)
    let prefer_row_major_c = rsc != 1;

    let (mut a, mut b) = if prefer_row_major_c { (a, b) } else { (b, a) };
    let (rsc, csc) = if prefer_row_major_c { (rsc, csc) } else { (csc, rsc) };

    macro_rules! shuffle_mask {
        ($z:expr, $y:expr, $x:expr, $w:expr) => {
            ($z << 6) | ($y << 4) | ($x << 2) | $w
        }
    }
    macro_rules! permute_mask {
        ($z:expr, $y:expr, $x:expr, $w:expr) => {
            ($z << 6) | ($y << 4) | ($x << 2) | $w
        }
    }

    macro_rules! permute2f128_mask {
        ($y:expr, $x:expr) => {
            (($y << 4) | $x)
        }
    }

    // Start data load before each iteration
    let mut av = _mm256_load_ps(a);
    let mut bv = _mm256_load_ps(b);

    // Compute A B
    unroll_by_with_last!(4 => k, is_last, {
        // We compute abij = ai bj
        //
        // Load b as one contiguous vector
        // Load a as striped vectors
        //
        // Shuffle the abij elements in order after the loop.
        //
        // Note this scheme copied and transposed from the BLIS 8x8 sgemm
        // microkernel.
        //
        // Our a indices are striped and our b indices are linear. In
        // the variable names below, we always have doubled indices so
        // for example a0246 corresponds to a vector of a0 a0 a2 a2 a4 a4 a6 a6.
        //
        // ab0246: ab2064: ab4602: ab6420:
        // ( ab00  ( ab20  ( ab40  ( ab60
        //   ab01    ab21    ab41    ab61
        //   ab22    ab02    ab62    ab42
        //   ab23    ab03    ab63    ab43
        //   ab44    ab64    ab04    ab24
        //   ab45    ab65    ab05    ab25
        //   ab66    ab46    ab26    ab06
        //   ab67 )  ab47 )  ab27 )  ab07 )
        //
        // ab1357: ab3175: ab5713: ab7531:
        // ( ab10  ( ab30  ( ab50  ( ab70
        //   ab11    ab31    ab51    ab71
        //   ab32    ab12    ab72    ab52
        //   ab33    ab13    ab73    ab53
        //   ab54    ab74    ab14    ab34
        //   ab55    ab75    ab15    ab35
        //   ab76    ab56    ab36    ab16
        //   ab77 )  ab57 )  ab37 )  ab17 )

        const PERM32_2301: i32 = permute_mask!(1, 0, 3, 2);
        const PERM128_30: i32 = permute2f128_mask!(0, 3);

        // _mm256_moveldup_ps(av):
        // vmovsldup ymm2, ymmword ptr [rax]
        //
        // Load and duplicate each even word:
        // ymm2 ← [a0 a0 a2 a2 a4 a4 a6 a6]
        //
        // _mm256_movehdup_ps(av):
        // vmovshdup ymm2, ymmword ptr [rax]
        //
        // Load and duplicate each odd word:
        // ymm2 ← [a1 a1 a3 a3 a5 a5 a7 a7]
        //

        let a0246 = _mm256_moveldup_ps(av); // Load: a0 a0 a2 a2 a4 a4 a6 a6
        let a2064 = _mm256_permute_ps(a0246, PERM32_2301);

        let a1357 = _mm256_movehdup_ps(av); // Load: a1 a1 a3 a3 a5 a5 a7 a7
        let a3175 = _mm256_permute_ps(a1357, PERM32_2301);

        let a4602 = _mm256_permute2f128_ps(a0246, a0246, PERM128_30);
        let a6420 = _mm256_permute2f128_ps(a2064, a2064, PERM128_30);

        let a5713 = _mm256_permute2f128_ps(a1357, a1357, PERM128_30);
        let a7531 = _mm256_permute2f128_ps(a3175, a3175, PERM128_30);

        ab[0] = MA::multiply_add(a0246, bv, ab[0]);
        ab[1] = MA::multiply_add(a2064, bv, ab[1]);
        ab[2] = MA::multiply_add(a4602, bv, ab[2]);
        ab[3] = MA::multiply_add(a6420, bv, ab[3]);

        ab[4] = MA::multiply_add(a1357, bv, ab[4]);
        ab[5] = MA::multiply_add(a3175, bv, ab[5]);
        ab[6] = MA::multiply_add(a5713, bv, ab[6]);
        ab[7] = MA::multiply_add(a7531, bv, ab[7]);

        if !is_last {
            a = a.add(MR);
            b = b.add(NR);

            bv = _mm256_load_ps(b);
            av = _mm256_load_ps(a);
        }
    });

    let alphav = _mm256_set1_ps(alpha);

    // Permute to put the abij elements in order
    //
    // shufps 0xe4: 22006644 00224466 -> 22226666
    //
    // vperm2 0x30: 00004444 44440000 -> 00000000
    // vperm2 0x12: 00004444 44440000 -> 44444444
    //
    
    let ab0246 = ab[0];
    let ab2064 = ab[1];
    let ab4602 = ab[2];
    let ab6420 = ab[3];

    let ab1357 = ab[4];
    let ab3175 = ab[5];
    let ab5713 = ab[6];
    let ab7531 = ab[7];

    const SHUF_0123: i32 = shuffle_mask!(3, 2, 1, 0);
    debug_assert_eq!(SHUF_0123, 0xE4);

    const PERM128_03: i32 = permute2f128_mask!(3, 0);
    const PERM128_21: i32 = permute2f128_mask!(1, 2);

    // No elements are "shuffled" in truth, they all stay at their index
    // but we combine vectors to de-stripe them.
    //
    // For example, the first shuffle below uses 0 1 2 3 which
    // corresponds to the X0 X1 Y2 Y3 sequence etc:
    //
    //                                             variable
    // X ab00 ab01 ab22 ab23 ab44 ab45 ab66 ab67   ab0246
    // Y ab20 ab21 ab02 ab03 ab64 ab65 ab46 ab47   ab2064
    // 
    //   X0   X1   Y2   Y3   X4   X5   Y6   Y7
    // = ab00 ab01 ab02 ab03 ab44 ab45 ab46 ab47   ab0044

    let ab0044 = _mm256_shuffle_ps(ab0246, ab2064, SHUF_0123);
    let ab2266 = _mm256_shuffle_ps(ab2064, ab0246, SHUF_0123);

    let ab4400 = _mm256_shuffle_ps(ab4602, ab6420, SHUF_0123);
    let ab6622 = _mm256_shuffle_ps(ab6420, ab4602, SHUF_0123);

    let ab1155 = _mm256_shuffle_ps(ab1357, ab3175, SHUF_0123);
    let ab3377 = _mm256_shuffle_ps(ab3175, ab1357, SHUF_0123);

    let ab5511 = _mm256_shuffle_ps(ab5713, ab7531, SHUF_0123);
    let ab7733 = _mm256_shuffle_ps(ab7531, ab5713, SHUF_0123);

    let ab0000 = _mm256_permute2f128_ps(ab0044, ab4400, PERM128_03);
    let ab4444 = _mm256_permute2f128_ps(ab0044, ab4400, PERM128_21);

    let ab2222 = _mm256_permute2f128_ps(ab2266, ab6622, PERM128_03);
    let ab6666 = _mm256_permute2f128_ps(ab2266, ab6622, PERM128_21);

    let ab1111 = _mm256_permute2f128_ps(ab1155, ab5511, PERM128_03);
    let ab5555 = _mm256_permute2f128_ps(ab1155, ab5511, PERM128_21);

    let ab3333 = _mm256_permute2f128_ps(ab3377, ab7733, PERM128_03);
    let ab7777 = _mm256_permute2f128_ps(ab3377, ab7733, PERM128_21);

    ab[0] = ab0000;
    ab[1] = ab1111;
    ab[2] = ab2222;
    ab[3] = ab3333;
    ab[4] = ab4444;
    ab[5] = ab5555;
    ab[6] = ab6666;
    ab[7] = ab7777;

    // Compute α (A B)
    // Compute here if we don't have fma, else pick up α further down
    if !MA::IS_FUSED {
        loop_m!(i, ab[i] = _mm256_mul_ps(alphav, ab[i]));
    }

    macro_rules! c {
        ($i:expr, $j:expr) => (c.offset(rsc * $i as isize + csc * $j as isize));
    }

    // C ← α A B + β C
    let mut cv = [_mm256_setzero_ps(); MR];
    if beta != 0. {
        let betav = _mm256_set1_ps(beta);
        // Read C
        if csc == 1 {
            loop_m!(i, cv[i] = _mm256_loadu_ps(c![i, 0]));
        } else {
            loop_m!(i, cv[i] = _mm256_setr_ps(*c![i, 0], *c![i, 1], *c![i, 2], *c![i, 3],
                                              *c![i, 4], *c![i, 5], *c![i, 6], *c![i, 7]));
        }
        // Compute β C
        loop_m!(i, cv[i] = _mm256_mul_ps(cv[i], betav));
    }

    // Compute (α A B) + (β C)
    if !MA::IS_FUSED {
        loop_m!(i, cv[i] = _mm256_add_ps(cv[i], ab[i]));
    } else {
        loop_m!(i, cv[i] = MA::multiply_add(alphav, ab[i], cv[i]));
    }

    // Store C back to memory
    if csc == 1 {
        loop_m!(i, _mm256_storeu_ps(c![i, 0], cv[i]));
    } else {
        // Permute to bring each element in the vector to the front and store
        loop_m!(i, {
            let cvlo = _mm256_extractf128_ps(cv[i], 0);
            let cvhi = _mm256_extractf128_ps(cv[i], 1);

            _mm_store_ss(c![i, 0], cvlo);
            let cperm = _mm_permute_ps(cvlo, permute_mask!(0, 3, 2, 1));
            _mm_store_ss(c![i, 1], cperm);
            let cperm = _mm_permute_ps(cperm, permute_mask!(0, 3, 2, 1));
            _mm_store_ss(c![i, 2], cperm);
            let cperm = _mm_permute_ps(cperm, permute_mask!(0, 3, 2, 1));
            _mm_store_ss(c![i, 3], cperm);

            _mm_store_ss(c![i, 4], cvhi);
            let cperm = _mm_permute_ps(cvhi, permute_mask!(0, 3, 2, 1));
            _mm_store_ss(c![i, 5], cperm);
            let cperm = _mm_permute_ps(cperm, permute_mask!(0, 3, 2, 1));
            _mm_store_ss(c![i, 6], cperm);
            let cperm = _mm_permute_ps(cperm, permute_mask!(0, 3, 2, 1));
            _mm_store_ss(c![i, 7], cperm);
        });
    }
}

#[inline]
unsafe fn kernel_fallback_impl(k: usize, alpha: T, a: *const T, b: *const T,
                               beta: T, c: *mut T, rsc: isize, csc: isize)
{
    const MR: usize = KernelFallback::MR;
    const NR: usize = KernelFallback::NR;
    let mut ab: [[T; NR]; MR] = [[0.; NR]; MR];
    let mut a = a;
    let mut b = b;
    debug_assert_eq!(beta, 0., "Beta must be 0 or is not masked");

    // Compute A B into ab[i][j]
    unroll_by!(4 => k, {
        loop8!(i, loop4!(j, ab[i][j] += at(a, i) * at(b, j)));

        a = a.offset(MR as isize);
        b = b.offset(NR as isize);
    });

    macro_rules! c {
        ($i:expr, $j:expr) => (c.offset(rsc * $i as isize + csc * $j as isize));
    }

    // set C = α A B
    loop4!(j, loop8!(i, *c![i, j] = alpha * ab[i][j]));
}

#[inline(always)]
unsafe fn at(ptr: *const T, i: usize) -> T {
    *ptr.offset(i as isize)
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::vec;
    use crate::aligned_alloc::Alloc;

    fn aligned_alloc<K>(elt: K::Elem, n: usize) -> Alloc<K::Elem>
        where K: GemmKernel,
              K::Elem: Copy,
    {
        unsafe {
            Alloc::new(n, K::align_to()).init_with(elt)
        }
    }

    use super::T;

    fn test_a_kernel<K: GemmKernel<Elem=T>>(_name: &str) {
        const K: usize = 4;
        let mr = K::MR;
        let nr = K::NR;
        let mut a = aligned_alloc::<K>(1., mr * K);
        let mut b = aligned_alloc::<K>(0., nr * K);
        for (i, x) in a.iter_mut().enumerate() {
            *x = i as _;
        }

        for i in 0..K {
            b[i + i * nr] = 1.;
        }
        let mut c = vec![0.; mr * nr];
        unsafe {
            K::kernel(K, 1., &a[0], &b[0], 0., &mut c[0], 1, mr as isize);
            // col major C
        }
        assert_eq!(&a[..], &c[..a.len()]);
    }

    #[test]
    fn test_kernel_fallback_impl() {
        test_a_kernel::<KernelFallback>("kernel");
    }

    #[cfg(any(target_arch="x86", target_arch="x86_64"))]
    #[test]
    fn test_loop_m_n() {
        let mut m = [[0; KernelAvx::NR]; KernelAvx::MR];
        loop_m!(i, loop_n!(j, m[i][j] += 1));
        for arr in &m[..] {
            for elt in &arr[..] {
                assert_eq!(*elt, 1);
            }
        }
    }

    #[cfg(any(target_arch="x86", target_arch="x86_64"))]
    mod test_arch_kernels {
        use super::test_a_kernel;
        use super::super::*;
        #[cfg(features = "std")]
        use std::println;
        macro_rules! test_arch_kernels_x86 {
            ($($feature_name:tt, $name:ident, $kernel_ty:ty),*) => {
                $(
                #[test]
                fn $name() {
                    if is_x86_feature_detected_!($feature_name) {
                        test_a_kernel::<$kernel_ty>(stringify!($name));
                    } else {
                        #[cfg(features = "std")]
                        println!("Skipping, host does not have feature: {:?}", $feature_name);
                    }
                }
                )*
            }
        }

        test_arch_kernels_x86! {
            "fma", fma, KernelFma,
            "avx", avx, KernelAvx,
            "sse2", sse2, KernelSse2
        }

        #[test]
        fn ensure_target_features_tested() {
            // If enabled, this test ensures that the requested feature actually
            // was enabled on this configuration, so that it was tested.
            let should_ensure_feature = !option_env!("MMTEST_ENSUREFEATURE")
                                                    .unwrap_or("").is_empty();
            if !should_ensure_feature {
                // skip
                return;
            }
            let feature_name = option_env!("MMTEST_FEATURE")
                                          .expect("No MMTEST_FEATURE configured!");
            let detected = match feature_name {
                "avx" => is_x86_feature_detected_!("avx"),
                "fma" => is_x86_feature_detected_!("fma"),
                "sse2" => is_x86_feature_detected_!("sse2"),
                _ => false,
            };
            assert!(detected, "Feature {:?} was not detected, so it could not be tested",
                    feature_name);
        }
    }
}