1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//! A Loop Invariant Code Motion optimization pass

use crate::cursor::{Cursor, EncCursor, FuncCursor};
use crate::dominator_tree::DominatorTree;
use crate::entity::{EntityList, ListPool};
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::fx::FxHashSet;
use crate::ir::{
    Block, DataFlowGraph, Function, Inst, InstBuilder, InstructionData, Layout, Opcode, Type, Value,
};
use crate::isa::TargetIsa;
use crate::loop_analysis::{Loop, LoopAnalysis};
use crate::timing;
use alloc::vec::Vec;

/// Performs the LICM pass by detecting loops within the CFG and moving
/// loop-invariant instructions out of them.
/// Changes the CFG and domtree in-place during the operation.
pub fn do_licm(
    isa: &dyn TargetIsa,
    func: &mut Function,
    cfg: &mut ControlFlowGraph,
    domtree: &mut DominatorTree,
    loop_analysis: &mut LoopAnalysis,
) {
    let _tt = timing::licm();
    debug_assert!(cfg.is_valid());
    debug_assert!(domtree.is_valid());
    debug_assert!(loop_analysis.is_valid());

    for lp in loop_analysis.loops() {
        // For each loop that we want to optimize we determine the set of loop-invariant
        // instructions
        let invariant_insts = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
        // Then we create the loop's pre-header and fill it with the invariant instructions
        // Then we remove the invariant instructions from the loop body
        if !invariant_insts.is_empty() {
            // If the loop has a natural pre-header we use it, otherwise we create it.
            let mut pos;
            match has_pre_header(&func.layout, cfg, domtree, loop_analysis.loop_header(lp)) {
                None => {
                    let pre_header =
                        create_pre_header(isa, loop_analysis.loop_header(lp), func, cfg, domtree);
                    pos = FuncCursor::new(func).at_last_inst(pre_header);
                }
                // If there is a natural pre-header we insert new instructions just before the
                // related jumping instruction (which is not necessarily at the end).
                Some((_, last_inst)) => {
                    pos = FuncCursor::new(func).at_inst(last_inst);
                }
            };
            // The last instruction of the pre-header is the termination instruction (usually
            // a jump) so we need to insert just before this.
            for inst in invariant_insts {
                pos.insert_inst(inst);
            }
        }
    }
    // We have to recompute the domtree to account for the changes
    cfg.compute(func);
    domtree.compute(func, cfg);
}

/// Insert a pre-header before the header, modifying the function layout and CFG to reflect it.
/// A jump instruction to the header is placed at the end of the pre-header.
fn create_pre_header(
    isa: &dyn TargetIsa,
    header: Block,
    func: &mut Function,
    cfg: &mut ControlFlowGraph,
    domtree: &DominatorTree,
) -> Block {
    let pool = &mut ListPool::<Value>::new();
    let header_args_values = func.dfg.block_params(header).to_vec();
    let header_args_types: Vec<Type> = header_args_values
        .into_iter()
        .map(|val| func.dfg.value_type(val))
        .collect();
    let pre_header = func.dfg.make_block();
    let mut pre_header_args_value: EntityList<Value> = EntityList::new();
    for typ in header_args_types {
        pre_header_args_value.push(func.dfg.append_block_param(pre_header, typ), pool);
    }

    for BlockPredecessor {
        inst: last_inst, ..
    } in cfg.pred_iter(header)
    {
        // We only follow normal edges (not the back edges)
        if !domtree.dominates(header, last_inst, &func.layout) {
            func.rewrite_branch_destination(last_inst, header, pre_header);
        }
    }

    // Inserts the pre-header at the right place in the layout.
    let mut pos = EncCursor::new(func, isa).at_top(header);
    pos.insert_block(pre_header);
    pos.next_inst();
    pos.ins().jump(header, pre_header_args_value.as_slice(pool));

    pre_header
}

/// Detects if a loop header has a natural pre-header.
///
/// A loop header has a pre-header if there is only one predecessor that the header doesn't
/// dominate.
/// Returns the pre-header Block and the instruction jumping to the header.
fn has_pre_header(
    layout: &Layout,
    cfg: &ControlFlowGraph,
    domtree: &DominatorTree,
    header: Block,
) -> Option<(Block, Inst)> {
    let mut result = None;
    for BlockPredecessor {
        block: pred_block,
        inst: branch_inst,
    } in cfg.pred_iter(header)
    {
        // We only count normal edges (not the back edges)
        if !domtree.dominates(header, branch_inst, layout) {
            if result.is_some() {
                // We have already found one, there are more than one
                return None;
            }
            if branch_inst != layout.last_inst(pred_block).unwrap()
                || cfg.succ_iter(pred_block).nth(1).is_some()
            {
                // It's along a critical edge, so don't use it.
                return None;
            }
            result = Some((pred_block, branch_inst));
        }
    }
    result
}

/// Test whether the given opcode is unsafe to even consider for LICM.
fn trivially_unsafe_for_licm(opcode: Opcode) -> bool {
    opcode.can_store()
        || opcode.is_call()
        || opcode.is_branch()
        || opcode.is_terminator()
        || opcode.is_return()
        || opcode.can_trap()
        || opcode.other_side_effects()
        || opcode.writes_cpu_flags()
}

fn is_unsafe_load(inst_data: &InstructionData) -> bool {
    match *inst_data {
        InstructionData::Load { flags, .. } | InstructionData::LoadComplex { flags, .. } => {
            !flags.readonly() || !flags.notrap()
        }
        _ => inst_data.opcode().can_load(),
    }
}

/// Test whether the given instruction is loop-invariant.
fn is_loop_invariant(inst: Inst, dfg: &DataFlowGraph, loop_values: &FxHashSet<Value>) -> bool {
    if trivially_unsafe_for_licm(dfg[inst].opcode()) {
        return false;
    }

    if is_unsafe_load(&dfg[inst]) {
        return false;
    }

    let inst_args = dfg.inst_args(inst);
    for arg in inst_args {
        let arg = dfg.resolve_aliases(*arg);
        if loop_values.contains(&arg) {
            return false;
        }
    }
    true
}

/// Traverses a loop in reverse post-order from a header block and identify loop-invariant
/// instructions. These loop-invariant instructions are then removed from the code and returned
/// (in reverse post-order) for later use.
fn remove_loop_invariant_instructions(
    lp: Loop,
    func: &mut Function,
    cfg: &ControlFlowGraph,
    loop_analysis: &LoopAnalysis,
) -> Vec<Inst> {
    let mut loop_values: FxHashSet<Value> = FxHashSet();
    let mut invariant_insts: Vec<Inst> = Vec::new();
    let mut pos = FuncCursor::new(func);
    // We traverse the loop block in reverse post-order.
    for block in postorder_blocks_loop(loop_analysis, cfg, lp).iter().rev() {
        // Arguments of the block are loop values
        for val in pos.func.dfg.block_params(*block) {
            loop_values.insert(*val);
        }
        pos.goto_top(*block);
        #[cfg_attr(feature = "cargo-clippy", allow(clippy::block_in_if_condition_stmt))]
        while let Some(inst) = pos.next_inst() {
            if is_loop_invariant(inst, &pos.func.dfg, &loop_values) {
                // If all the instruction's argument are defined outside the loop
                // then this instruction is loop-invariant
                invariant_insts.push(inst);
                // We remove it from the loop
                pos.remove_inst_and_step_back();
            } else {
                // If the instruction is not loop-invariant we push its results in the set of
                // loop values
                for out in pos.func.dfg.inst_results(inst) {
                    loop_values.insert(*out);
                }
            }
        }
    }
    invariant_insts
}

/// Return blocks from a loop in post-order, starting from an entry point in the block.
fn postorder_blocks_loop(
    loop_analysis: &LoopAnalysis,
    cfg: &ControlFlowGraph,
    lp: Loop,
) -> Vec<Block> {
    let mut grey = FxHashSet();
    let mut black = FxHashSet();
    let mut stack = vec![loop_analysis.loop_header(lp)];
    let mut postorder = Vec::new();

    while !stack.is_empty() {
        let node = stack.pop().unwrap();
        if !grey.contains(&node) {
            // This is a white node. Mark it as gray.
            grey.insert(node);
            stack.push(node);
            // Get any children we've never seen before.
            for child in cfg.succ_iter(node) {
                if loop_analysis.is_in_loop(child, lp) && !grey.contains(&child) {
                    stack.push(child);
                }
            }
        } else if !black.contains(&node) {
            postorder.push(node);
            black.insert(node);
        }
    }
    postorder
}