1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
// Copyright 2016 - 2018 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::kernel::GemmKernel;
use crate::kernel::GemmSelect;
#[allow(unused)]
use crate::kernel::{U4, U8};
use crate::archparam;
#[cfg(target_arch="x86")]
use core::arch::x86::*;
#[cfg(target_arch="x86_64")]
use core::arch::x86_64::*;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
use crate::x86::{FusedMulAdd, AvxMulAdd, DMultiplyAdd};
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelAvx;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelFma;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelSse2;
struct KernelFallback;
type T = f64;
/// Detect which implementation to use and select it using the selector's
/// .select(Kernel) method.
///
/// This function is called one or more times during a whole program's
/// execution, it may be called for each gemm kernel invocation or fewer times.
#[inline]
pub(crate) fn detect<G>(selector: G) where G: GemmSelect<T> {
// dispatch to specific compiled versions
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
{
if is_x86_feature_detected_!("fma") {
return selector.select(KernelFma);
} else if is_x86_feature_detected_!("avx") {
return selector.select(KernelAvx);
} else if is_x86_feature_detected_!("sse2") {
return selector.select(KernelSse2);
}
}
return selector.select(KernelFallback);
}
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
macro_rules! loop_m {
($i:ident, $e:expr) => { loop8!($i, $e) };
}
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelAvx {
type Elem = T;
type MRTy = U8;
type NRTy = U4;
#[inline(always)]
fn align_to() -> usize { 32 }
#[inline(always)]
fn always_masked() -> bool { false }
#[inline(always)]
fn nc() -> usize { archparam::D_NC }
#[inline(always)]
fn kc() -> usize { archparam::D_KC }
#[inline(always)]
fn mc() -> usize { archparam::D_MC }
#[inline(always)]
unsafe fn kernel(
k: usize,
alpha: T,
a: *const T,
b: *const T,
beta: T,
c: *mut T,
rsc: isize,
csc: isize)
{
kernel_target_avx(k, alpha, a, b, beta, c, rsc, csc)
}
}
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelFma {
type Elem = T;
type MRTy = <KernelAvx as GemmKernel>::MRTy;
type NRTy = <KernelAvx as GemmKernel>::NRTy;
#[inline(always)]
fn align_to() -> usize { KernelAvx::align_to() }
#[inline(always)]
fn always_masked() -> bool { KernelAvx::always_masked() }
#[inline(always)]
fn nc() -> usize { archparam::D_NC }
#[inline(always)]
fn kc() -> usize { archparam::D_KC }
#[inline(always)]
fn mc() -> usize { archparam::D_MC }
#[inline(always)]
unsafe fn kernel(
k: usize,
alpha: T,
a: *const T,
b: *const T,
beta: T,
c: *mut T,
rsc: isize,
csc: isize)
{
kernel_target_fma(k, alpha, a, b, beta, c, rsc, csc)
}
}
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelSse2 {
type Elem = T;
type MRTy = U4;
type NRTy = U4;
#[inline(always)]
fn align_to() -> usize { 16 }
#[inline(always)]
fn always_masked() -> bool { true }
#[inline(always)]
fn nc() -> usize { archparam::D_NC }
#[inline(always)]
fn kc() -> usize { archparam::D_KC }
#[inline(always)]
fn mc() -> usize { archparam::D_MC }
#[inline(always)]
unsafe fn kernel(
k: usize,
alpha: T,
a: *const T,
b: *const T,
beta: T,
c: *mut T,
rsc: isize,
csc: isize)
{
kernel_target_sse2(k, alpha, a, b, beta, c, rsc, csc)
}
}
impl GemmKernel for KernelFallback {
type Elem = T;
type MRTy = U4;
type NRTy = U4;
#[inline(always)]
fn align_to() -> usize { 0 }
#[inline(always)]
fn always_masked() -> bool { true }
#[inline(always)]
fn nc() -> usize { archparam::D_NC }
#[inline(always)]
fn kc() -> usize { archparam::D_KC }
#[inline(always)]
fn mc() -> usize { archparam::D_MC }
#[inline(always)]
unsafe fn kernel(
k: usize,
alpha: T,
a: *const T,
b: *const T,
beta: T,
c: *mut T,
rsc: isize,
csc: isize)
{
kernel_fallback_impl(k, alpha, a, b, beta, c, rsc, csc)
}
}
// no inline for unmasked kernels
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="fma")]
unsafe fn kernel_target_fma(k: usize, alpha: T, a: *const T, b: *const T,
beta: T, c: *mut T, rsc: isize, csc: isize)
{
kernel_x86_avx::<FusedMulAdd>(k, alpha, a, b, beta, c, rsc, csc)
}
// no inline for unmasked kernels
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="avx")]
unsafe fn kernel_target_avx(k: usize, alpha: T, a: *const T, b: *const T,
beta: T, c: *mut T, rsc: isize, csc: isize)
{
kernel_x86_avx::<AvxMulAdd>(k, alpha, a, b, beta, c, rsc, csc)
}
#[inline]
#[target_feature(enable="sse2")]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
unsafe fn kernel_target_sse2(k: usize, alpha: T, a: *const T, b: *const T,
beta: T, c: *mut T, rsc: isize, csc: isize)
{
kernel_fallback_impl(k, alpha, a, b, beta, c, rsc, csc)
}
#[inline(always)]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
unsafe fn kernel_x86_avx<MA>(k: usize, alpha: T, a: *const T, b: *const T,
beta: T, c: *mut T, rsc: isize, csc: isize)
where MA: DMultiplyAdd
{
const MR: usize = KernelAvx::MR;
const NR: usize = KernelAvx::NR;
debug_assert_ne!(k, 0);
let mut ab = [_mm256_setzero_pd(); MR];
let (mut a, mut b) = (a, b);
// With MR=8, we load sets of 4 doubles from a
let mut a_0123 = _mm256_load_pd(a);
let mut a_4567 = _mm256_load_pd(a.add(4));
// With NR=4, we load 4 doubles from b
let mut b_0123 = _mm256_load_pd(b);
unroll_by_with_last!(4 => k, is_last, {
// We need to multiply each element of b with each element of a_0
// and a_1. To do so, we need to generate all possible permutations
// for the doubles in b, but without two permutations having the
// same double at the same spot.
//
// So, if we are given the permutations (indices of the doubles
// in the packed 4-vector):
//
// 0 1 2 3
//
// Then another valid permutation has to shuffle all elements
// around without a single element remaining at the same index
// it was before.
//
// A possible set of valid combination then are:
//
// 0 1 2 3 (the original)
// 1 0 3 2 (chosen because of _mm256_shuffle_pd)
// 2 3 0 1 (chosen because of _mm256_permute2f128_pd)
// 3 0 1 2 (chosen because of _mm256_shuffle_pd applied after _mm256_permute2f128_pd)
let b_1032 = _mm256_shuffle_pd(b_0123, b_0123, 0b0101);
// Both packed 4-vectors are the same, so one could also perform
// the selection 0b0000_0001 or 0b0011_0010.
// The confusing part is that of the lower 4 bits and upper 4 bits
// only 2 bits are used in each. The same choice could have been
// encoded in a nibble (4 bits) total, i.e. 0b1100, had the intrinsics
// been defined differently. The highest bit in each nibble controls
// zero-ing behaviour though.
// let b_2301 = _mm256_permute2f128_pd(b_0123, b_0123, 0b0011_0000);
// 0b0011_0000 = 0x30; makes it clearer which bits we are acting on.
let b_3210 = _mm256_permute2f128_pd(b_1032, b_1032, 0x03);
let b_2301 = _mm256_shuffle_pd(b_3210, b_3210, 0b0101);
// The ideal distribution of a_i b_j pairs in the resulting panel of
// c in order to have the matching products / sums of products in the
// right places would look like this after the first iteration:
//
// ab_0 || a0 b0 | a0 b1 | a0 b2 | a0 b3
// ab_1 || a1 b0 | a1 b1 | a1 b2 | a1 b3
// ab_2 || a2 b0 | a2 b1 | a2 b2 | a2 b3
// ab_3 || a3 b0 | a3 b1 | a3 b2 | a3 b3
// || -----------------------------
// ab_4 || a4 b0 | a4 b1 | a4 b2 | a4 b3
// ab_5 || a5 b0 | a5 b1 | a5 b2 | a5 b3
// ab_6 || a6 b0 | a6 b1 | a6 b2 | a6 b3
// ab_7 || a7 b0 | a7 b1 | a7 b2 | a7 b3
//
// As this is not possible / would require too many extra variables
// and thus operations, we get the following configuration, and thus
// have to be smart about putting the correct values into their
// respective places at the end.
//
// ab_0 || a0 b0 | a1 b1 | a2 b2 | a3 b3
// ab_1 || a0 b1 | a1 b0 | a2 b3 | a3 b2
// ab_2 || a0 b2 | a1 b3 | a2 b0 | a3 b1
// ab_3 || a0 b3 | a1 b2 | a2 b1 | a3 b0
// || -----------------------------
// ab_4 || a4 b0 | a5 b1 | a6 b2 | a7 b3
// ab_5 || a4 b1 | a5 b0 | a6 b3 | a7 b2
// ab_6 || a4 b2 | a5 b3 | a6 b0 | a7 b1
// ab_7 || a4 b3 | a5 b2 | a6 b1 | a7 b0
// Add and multiply in one go
ab[0] = MA::multiply_add(a_0123, b_0123, ab[0]);
ab[1] = MA::multiply_add(a_0123, b_1032, ab[1]);
ab[2] = MA::multiply_add(a_0123, b_2301, ab[2]);
ab[3] = MA::multiply_add(a_0123, b_3210, ab[3]);
ab[4] = MA::multiply_add(a_4567, b_0123, ab[4]);
ab[5] = MA::multiply_add(a_4567, b_1032, ab[5]);
ab[6] = MA::multiply_add(a_4567, b_2301, ab[6]);
ab[7] = MA::multiply_add(a_4567, b_3210, ab[7]);
if !is_last {
a = a.add(MR);
b = b.add(NR);
a_0123 = _mm256_load_pd(a);
a_4567 = _mm256_load_pd(a.add(4));
b_0123 = _mm256_load_pd(b);
}
});
// Our products/sums are currently stored according to the
// table below. Each row corresponds to one packed simd
// 4-vector.
//
// ab_0 || a0 b0 | a1 b1 | a2 b2 | a3 b3
// ab_1 || a0 b1 | a1 b0 | a2 b3 | a3 b2
// ab_2 || a0 b2 | a1 b3 | a2 b0 | a3 b1
// ab_3 || a0 b3 | a1 b2 | a2 b1 | a3 b0
// || -----------------------------
// ab_4 || a4 b0 | a5 b1 | a6 b2 | a7 b3
// ab_5 || a4 b1 | a5 b0 | a6 b3 | a7 b2
// ab_6 || a4 b2 | a5 b3 | a6 b0 | a7 b1
// ab_7 || a4 b3 | a5 b2 | a6 b1 | a7 b0
//
// This is the final results, where indices are stored
// in their proper location.
//
// || a0 b0 | a0 b1 | a0 b2 | a0 b3
// || a1 b0 | a1 b1 | a1 b2 | a1 b3
// || a2 b0 | a2 b1 | a2 b2 | a2 b3
// || a3 b0 | a3 b1 | a3 b2 | a3 b3
// || -----------------------------
// || a4 b0 | a4 b1 | a4 b2 | a4 b3
// || a5 b0 | a5 b1 | a5 b2 | a5 b3
// || a6 b0 | a6 b1 | a6 b2 | a6 b3
// || a7 b0 | a7 b1 | a7 b2 | a7 b3
//
// Given the simd intrinsics available through avx, we have two
// ways of achieving this format. By either:
//
// a) Creating packed 4-vectors of rows, or
// b) creating packed 4-vectors of columns.
//
// ** We will use option a) because it has slightly cheaper throughput
// characteristics (see below).
//
// # a) Creating packed 4-vectors of columns
//
// To create packed 4-vectors of columns, we make us of
// _mm256_blend_pd operations, followed by _mm256_permute2f128_pd.
//
// The first operation has latency 1 (all architectures), and 0.33
// throughput (Skylake, Broadwell, Haswell), or 0.5 (Ivy Bridge).
//
// The second operation has latency 3 (on Skylake, Broadwell, Haswell),
// or latency 2 (on Ivy Brdige), and throughput 1 (all architectures).
//
// We start by applying _mm256_blend_pd on adjacent rows:
//
// Step 0.0
// a0 b0 | a1 b1 | a2 b2 | a3 b3
// a0 b1 | a1 b0 | a2 b3 | a3 b2
// => _mm256_blend_pd with 0b1010
// a0 b0 | a1 b0 | a2 b2 | a3 b2 (only columns 0 and 2)
//
// Step 0.1
// a0 b1 | a1 b0 | a2 b3 | a3 b2 (flipped the order)
// a0 b0 | a1 b1 | a2 b2 | a3 b3
// => _mm256_blend_pd with 0b1010
// a0 b1 | a1 b1 | a2 b3 | a3 b3 (only columns 1 and 3)
//
// Step 0.2
// a0 b2 | a1 b3 | a2 b0 | a3 b1
// a0 b3 | a1 b2 | a2 b1 | a3 b0
// => _mm256_blend_pd with 0b1010
// a0 b2 | a1 b2 | a2 b0 | a3 b0 (only columns 0 and 2)
//
// Step 0.3
// a0 b3 | a1 b2 | a2 b1 | a3 b0 (flipped the order)
// a0 b2 | a1 b3 | a2 b0 | a3 b1
// => _mm256_blend_pd with 0b1010
// a0 b3 | a1 b3 | a2 b1 | a3 b1 (only columns 1 and 3)
//
// Step 1.0 (combining steps 0.0 and 0.2)
//
// a0 b0 | a1 b0 | a2 b2 | a3 b2
// a0 b2 | a1 b2 | a2 b0 | a3 b0
// => _mm256_permute2f128_pd with 0x30 = 0b0011_0000
// a0 b0 | a1 b0 | a2 b0 | a3 b0
//
// Step 1.1 (combining steps 0.0 and 0.2)
//
// a0 b0 | a1 b0 | a2 b2 | a3 b2
// a0 b2 | a1 b2 | a2 b0 | a3 b0
// => _mm256_permute2f128_pd with 0x12 = 0b0001_0010
// a0 b2 | a1 b2 | a2 b2 | a3 b2
//
// Step 1.2 (combining steps 0.1 and 0.3)
// a0 b1 | a1 b1 | a2 b3 | a3 b3
// a0 b3 | a1 b3 | a2 b1 | a3 b1
// => _mm256_permute2f128_pd with 0x30 = 0b0011_0000
// a0 b1 | a1 b1 | a2 b1 | a3 b1
//
// Step 1.3 (combining steps 0.1 and 0.3)
// a0 b1 | a1 b1 | a2 b3 | a3 b3
// a0 b3 | a1 b3 | a2 b1 | a3 b1
// => _mm256_permute2f128_pd with 0x12 = 0b0001_0010
// a0 b3 | a1 b3 | a2 b3 | a3 b3
//
// # b) Creating packed 4-vectors of rows
//
// To create packed 4-vectors of rows, we make use of
// _mm256_shuffle_pd operations followed by _mm256_permute2f128_pd.
//
// The first operation has a latency 1, throughput 1 (on architectures
// Skylake, Broadwell, Haswell, and Ivy Bridge).
//
// The second operation has latency 3 (on Skylake, Broadwell, Haswell),
// or latency 2 (on Ivy Brdige), and throughput 1 (all architectures).
//
// To achieve this, we can execute a _mm256_shuffle_pd on
// rows 0 and 1 stored in ab_0 and ab_1:
//
// Step 0.0
// a0 b0 | a1 b1 | a2 b2 | a3 b3
// a0 b1 | a1 b0 | a2 b3 | a3 b2
// => _mm256_shuffle_pd with 0000
// a0 b0 | a0 b1 | a2 b2 | a2 b3 (only rows 0 and 2)
//
// Step 0.1
// a0 b1 | a1 b0 | a2 b3 | a3 b2 (flipped the order)
// a0 b0 | a1 b1 | a2 b2 | a3 b3
// => _mm256_shuffle_pd with 1111
// a1 b0 | a1 b1 | a3 b2 | a3 b3 (only rows 1 and 3)
//
// Next, we perform the same operation on the other two rows:
//
// Step 0.2
// a0 b2 | a1 b3 | a2 b0 | a3 b1
// a0 b3 | a1 b2 | a2 b1 | a3 b0
// => _mm256_shuffle_pd with 0000
// a0 b2 | a0 b3 | a2 b0 | a2 b1 (only rows 0 and 2)
//
// Step 0.3
// a0 b3 | a1 b2 | a2 b1 | a3 b0
// a0 b2 | a1 b3 | a2 b0 | a3 b1
// => _mm256_shuffle_pd with 1111
// a1 b2 | a1 b3 | a3 b0 | a3 b1 (only rows 1 and 3)
//
// Next, we can apply _mm256_permute2f128_pd to select the
// correct columns on the matching rows:
//
// Step 1.0 (combining Steps 0.0 and 0.2):
// a0 b0 | a0 b1 | a2 b2 | a2 b3
// a0 b2 | a0 b3 | a2 b0 | a2 b1
// => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
// a0 b0 | a0 b1 | a0 b2 | a0 b3
//
// Step 1.1 (combining Steps 0.0 and 0.2):
// a0 b0 | a0 b1 | a2 b2 | a2 b3
// a0 b2 | a0 b3 | a2 b0 | a2 b1
// => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
// a2 b0 | a2 b1 | a2 b2 | a2 b3
//
// Step 1.2 (combining Steps 0.1 and 0.3):
// a1 b0 | a1 b1 | a3 b2 | a3 b3
// a1 b2 | a1 b3 | a3 b0 | a3 b1
// => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
// a1 b0 | a1 b1 | a1 b2 | a1 b3
//
// Step 1.3 (combining Steps 0.1 and 0.3):
// a1 b0 | a1 b1 | a3 b2 | a3 b3
// a1 b2 | a1 b3 | a3 b0 | a3 b1
// => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
// a3 b0 | a3 b1 | a3 b2 | a3 b3
// We use scheme a) as the default case, i.e. if c is column-major, rsc==1, or if
// c is of general form. Row-major c matrices, csc==1, are treated using schema b).
if csc == 1 {
// Scheme b), step 0.0
// a0 b0 | a1 b1 | a2 b2 | a3 b3
// a0 b1 | a1 b0 | a2 b3 | a3 b2
let a0b0_a0b1_a2b2_a2b3 = _mm256_shuffle_pd(ab[0], ab[1], 0b0000);
// Scheme b), step 0.1
// a0 b1 | a1 b0 | a2 b3 | a3 b2 (flipped the order)
// a0 b0 | a1 b1 | a2 b2 | a3 b3
let a1b0_a1b1_a3b2_a3b3 = _mm256_shuffle_pd(ab[1], ab[0], 0b1111);
// Scheme b), step 0.2
// a0 b2 | a1 b3 | a2 b0 | a3 b1
// a0 b3 | a1 b2 | a2 b1 | a3 b0
let a0b2_a0b3_a2b0_a2b1 = _mm256_shuffle_pd(ab[2], ab[3], 0b0000);
// Scheme b), step 0.3
// a0 b3 | a1 b2 | a2 b1 | a3 b0 (flipped the order)
// a0 b2 | a1 b3 | a2 b0 | a3 b1
let a1b2_a1b3_a3b0_a3b1 = _mm256_shuffle_pd(ab[3], ab[2], 0b1111);
let a4b0_a4b1_a6b2_a6b3 = _mm256_shuffle_pd(ab[4], ab[5], 0b0000);
let a5b0_a5b1_a7b2_a7b3 = _mm256_shuffle_pd(ab[5], ab[4], 0b1111);
let a4b2_a4b3_a6b0_a6b1 = _mm256_shuffle_pd(ab[6], ab[7], 0b0000);
let a5b2_a5b3_a7b0_a7b1 = _mm256_shuffle_pd(ab[7], ab[6], 0b1111);
// Next, we can apply _mm256_permute2f128_pd to select the
// correct columns on the matching rows:
//
// Step 1.0 (combining Steps 0.0 and 0.2):
// a0 b0 | a0 b1 | a2 b2 | a2 b3
// a0 b2 | a0 b3 | a2 b0 | a2 b1
// => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
// a0 b0 | a0 b1 | a0 b2 | a0 b3
//
// Step 1.1 (combining Steps 0.0 and 0.2):
// a0 b0 | a0 b1 | a2 b2 | a2 b3
// a0 b2 | a0 b3 | a2 b0 | a2 b1
// => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
// a2 b0 | a2 b1 | a2 b2 | a2 b3
//
// Step 1.2 (combining Steps 0.1 and 0.3):
// a1 b0 | a1 b1 | a3 b2 | a3 b3
// a1 b2 | a1 b3 | a3 b0 | a3 b1
// => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
// a1 b0 | a1 b1 | a1 b2 | a1 b3
//
// Step 1.3 (combining Steps 0.1 and 0.3):
// a1 b0 | a1 b1 | a3 b2 | a3 b3
// a1 b2 | a1 b3 | a3 b0 | a3 b1
// => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
// a3 b0 | a3 b1 | a3 b2 | a3 b3
// Scheme b), step 1.0
let a0b0_a0b1_a0b2_a0b3 = _mm256_permute2f128_pd(
a0b0_a0b1_a2b2_a2b3,
a0b2_a0b3_a2b0_a2b1,
0x20
);
// Scheme b), step 1.1
let a2b0_a2b1_a2b2_a2b3 = _mm256_permute2f128_pd(
a0b0_a0b1_a2b2_a2b3,
a0b2_a0b3_a2b0_a2b1,
0x13
);
// Scheme b) step 1.2
let a1b0_a1b1_a1b2_a1b3 = _mm256_permute2f128_pd(
a1b0_a1b1_a3b2_a3b3,
a1b2_a1b3_a3b0_a3b1,
0x20
);
// Scheme b) step 1.3
let a3b0_a3b1_a3b2_a3b3 = _mm256_permute2f128_pd(
a1b0_a1b1_a3b2_a3b3,
a1b2_a1b3_a3b0_a3b1,
0x13
);
// As above, but for ab[4..7]
let a4b0_a4b1_a4b2_a4b3 = _mm256_permute2f128_pd(
a4b0_a4b1_a6b2_a6b3,
a4b2_a4b3_a6b0_a6b1,
0x20
);
let a6b0_a6b1_a6b2_a6b3 = _mm256_permute2f128_pd(
a4b0_a4b1_a6b2_a6b3,
a4b2_a4b3_a6b0_a6b1,
0x13
);
let a5b0_a5b1_a5b2_a5b3 = _mm256_permute2f128_pd(
a5b0_a5b1_a7b2_a7b3,
a5b2_a5b3_a7b0_a7b1,
0x20
);
let a7b0_a7b1_a7b2_a7b3 = _mm256_permute2f128_pd(
a5b0_a5b1_a7b2_a7b3,
a5b2_a5b3_a7b0_a7b1,
0x13
);
ab[0] = a0b0_a0b1_a0b2_a0b3;
ab[1] = a1b0_a1b1_a1b2_a1b3;
ab[2] = a2b0_a2b1_a2b2_a2b3;
ab[3] = a3b0_a3b1_a3b2_a3b3;
ab[4] = a4b0_a4b1_a4b2_a4b3;
ab[5] = a5b0_a5b1_a5b2_a5b3;
ab[6] = a6b0_a6b1_a6b2_a6b3;
ab[7] = a7b0_a7b1_a7b2_a7b3;
// rsc == 1 and general matrix orders
} else {
// Scheme a), step 0.0
// ab[0] = a0 b0 | a1 b1 | a2 b2 | a3 b3
// ab[1] = a0 b1 | a1 b0 | a2 b3 | a3 b2
let a0b0_a1b0_a2b2_a3b2 = _mm256_blend_pd(ab[0], ab[1], 0b1010);
// Scheme a), step 0.1
let a0b1_a1b1_a2b3_a3b3 = _mm256_blend_pd(ab[1], ab[0], 0b1010);
// Scheme a), steps 0.2
// ab[2] = a0 b2 | a1 b3 | a2 b0 | a3 b1
// ab[3] = a0 b3 | a1 b2 | a2 b1 | a3 b0
let a0b2_a1b2_a2b0_a3b0 = _mm256_blend_pd(ab[2], ab[3], 0b1010);
// Scheme a), steps 0.3
let a0b3_a1b3_a2b1_a3b1 = _mm256_blend_pd(ab[3], ab[2], 0b1010);
// ab[4] = a4 b0 | a5 b1 | a6 b2 | a7 b3
// ab[5] = a4 b1 | a5 b0 | a6 b3 | a7 b2
let a4b0_a5b0_a6b2_a7b2 = _mm256_blend_pd(ab[4], ab[5], 0b1010);
let a4b1_a5b1_a6b3_a7b3 = _mm256_blend_pd(ab[5], ab[4], 0b1010);
// ab[6] = a0 b2 | a1 b3 | a2 b0 | a3 b1
// ab[7] = a0 b3 | a1 b2 | a2 b1 | a3 b0
let a4b2_a5b2_a6b0_a7b0 = _mm256_blend_pd(ab[6], ab[7], 0b1010);
let a4b3_a5b3_a6b1_a7b1 = _mm256_blend_pd(ab[7], ab[6], 0b1010);
// Scheme a), step 1.0
let a0b0_a1b0_a2b0_a3b0 = _mm256_permute2f128_pd(
a0b0_a1b0_a2b2_a3b2,
a0b2_a1b2_a2b0_a3b0,
0x30
);
// Scheme a), step 1.1
let a0b2_a1b2_a2b2_a3b2 = _mm256_permute2f128_pd(
a0b0_a1b0_a2b2_a3b2,
a0b2_a1b2_a2b0_a3b0,
0x12,
);
// Scheme a) step 1.2
let a0b1_a1b1_a2b1_a3b1 = _mm256_permute2f128_pd(
a0b1_a1b1_a2b3_a3b3,
a0b3_a1b3_a2b1_a3b1,
0x30
);
// Scheme a) step 1.3
let a0b3_a1b3_a2b3_a3b3 = _mm256_permute2f128_pd(
a0b1_a1b1_a2b3_a3b3,
a0b3_a1b3_a2b1_a3b1,
0x12
);
// As above, but for ab[4..7]
let a4b0_a5b0_a6b0_a7b0 = _mm256_permute2f128_pd(
a4b0_a5b0_a6b2_a7b2,
a4b2_a5b2_a6b0_a7b0,
0x30
);
let a4b2_a5b2_a6b2_a7b2 = _mm256_permute2f128_pd(
a4b0_a5b0_a6b2_a7b2,
a4b2_a5b2_a6b0_a7b0,
0x12,
);
let a4b1_a5b1_a6b1_a7b1 = _mm256_permute2f128_pd(
a4b1_a5b1_a6b3_a7b3,
a4b3_a5b3_a6b1_a7b1,
0x30
);
let a4b3_a5b3_a6b3_a7b3 = _mm256_permute2f128_pd(
a4b1_a5b1_a6b3_a7b3,
a4b3_a5b3_a6b1_a7b1,
0x12
);
ab[0] = a0b0_a1b0_a2b0_a3b0;
ab[1] = a0b1_a1b1_a2b1_a3b1;
ab[2] = a0b2_a1b2_a2b2_a3b2;
ab[3] = a0b3_a1b3_a2b3_a3b3;
ab[4] = a4b0_a5b0_a6b0_a7b0;
ab[5] = a4b1_a5b1_a6b1_a7b1;
ab[6] = a4b2_a5b2_a6b2_a7b2;
ab[7] = a4b3_a5b3_a6b3_a7b3;
}
// Compute α (A B)
// Compute here if we don't have fma, else pick up α further down
let alphav = _mm256_broadcast_sd(&alpha);
if !MA::IS_FUSED {
loop_m!(i, ab[i] = _mm256_mul_pd(alphav, ab[i]));
}
macro_rules! c {
($i:expr, $j:expr) =>
(c.offset(rsc * $i as isize + csc * $j as isize));
}
// C ← α A B + β C
let mut cv = [_mm256_setzero_pd(); MR];
if beta != 0. {
// Read C
if rsc == 1 {
loop4!(i, cv[i] = _mm256_loadu_pd(c![0, i]));
loop4!(i, cv[i + 4] = _mm256_loadu_pd(c![4, i]));
} else if csc == 1 {
loop4!(i, cv[i] = _mm256_loadu_pd(c![i, 0]));
loop4!(i, cv[i+4] = _mm256_loadu_pd(c![i+4, 0]));
} else {
loop4!(i, cv[i] = _mm256_setr_pd(
*c![0, i],
*c![1, i],
*c![2, i],
*c![3, i]
));
loop4!(i, cv[i + 4] = _mm256_setr_pd(
*c![4, i],
*c![5, i],
*c![6, i],
*c![7, i]
));
}
// Compute β C
// _mm256_set1_pd and _mm256_broadcast_sd seem to achieve the same thing.
let beta_v = _mm256_broadcast_sd(&beta);
loop_m!(i, cv[i] = _mm256_mul_pd(cv[i], beta_v));
}
// Compute (α A B) + (β C)
if !MA::IS_FUSED {
loop_m!(i, cv[i] = _mm256_add_pd(cv[i], ab[i]));
} else {
loop_m!(i, cv[i] = MA::multiply_add(alphav, ab[i], cv[i]));
}
if rsc == 1 {
loop4!(i, _mm256_storeu_pd(c![0, i], cv[i]));
loop4!(i, _mm256_storeu_pd(c![4, i], cv[i + 4]));
} else if csc == 1 {
loop4!(i, _mm256_storeu_pd(c![i, 0], cv[i]));
loop4!(i, _mm256_storeu_pd(c![i+4, 0], cv[i + 4]));
} else {
// Permute to bring each element in the vector to the front and store
loop4!(i, {
// E.g. c_0_lo = a0b0 | a1b0
let c_lo: __m128d = _mm256_extractf128_pd(cv[i], 0);
// E.g. c_0_hi = a2b0 | a3b0
let c_hi: __m128d = _mm256_extractf128_pd(cv[i], 1);
_mm_storel_pd(c![0, i], c_lo);
_mm_storeh_pd(c![1, i], c_lo);
_mm_storel_pd(c![2, i], c_hi);
_mm_storeh_pd(c![3, i], c_hi);
// E.g. c_0_lo = a0b0 | a1b0
let c_lo: __m128d = _mm256_extractf128_pd(cv[i+4], 0);
// E.g. c_0_hi = a2b0 | a3b0
let c_hi: __m128d = _mm256_extractf128_pd(cv[i+4], 1);
_mm_storel_pd(c![4, i], c_lo);
_mm_storeh_pd(c![5, i], c_lo);
_mm_storel_pd(c![6, i], c_hi);
_mm_storeh_pd(c![7, i], c_hi);
});
}
}
#[inline]
unsafe fn kernel_fallback_impl(k: usize, alpha: T, a: *const T, b: *const T,
beta: T, c: *mut T, rsc: isize, csc: isize)
{
const MR: usize = KernelFallback::MR;
const NR: usize = KernelFallback::NR;
let mut ab: [[T; NR]; MR] = [[0.; NR]; MR];
let mut a = a;
let mut b = b;
debug_assert_eq!(beta, 0., "Beta must be 0 or is not masked");
// Compute matrix multiplication into ab[i][j]
unroll_by!(4 => k, {
loop4!(i, loop4!(j, ab[i][j] += at(a, i) * at(b, j)));
a = a.offset(MR as isize);
b = b.offset(NR as isize);
});
macro_rules! c {
($i:expr, $j:expr) => (c.offset(rsc * $i as isize + csc * $j as isize));
}
// set C = α A B
loop4!(j, loop4!(i, *c![i, j] = alpha * ab[i][j]));
}
#[inline(always)]
unsafe fn at(ptr: *const T, i: usize) -> T {
*ptr.offset(i as isize)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::aligned_alloc::Alloc;
fn aligned_alloc<K>(elt: K::Elem, n: usize) -> Alloc<K::Elem>
where K: GemmKernel,
K::Elem: Copy,
{
unsafe {
Alloc::new(n, K::align_to()).init_with(elt)
}
}
use super::T;
fn test_a_kernel<K: GemmKernel<Elem=T>>(_name: &str) {
const K: usize = 4;
let mr = K::MR;
let nr = K::NR;
let mut a = aligned_alloc::<K>(1., mr * K);
let mut b = aligned_alloc::<K>(0., nr * K);
for (i, x) in a.iter_mut().enumerate() {
*x = i as _;
}
for i in 0..K {
b[i + i * nr] = 1.;
}
let mut c = vec![0.; mr * nr];
unsafe {
K::kernel(K, 1., &a[0], &b[0], 0., &mut c[0], 1, mr as isize);
// col major C
}
assert_eq!(&a[..], &c[..a.len()]);
}
#[test]
fn test_kernel_fallback_impl() {
test_a_kernel::<KernelFallback>("kernel");
}
#[test]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
fn test_loop_m_n() {
let mut m = [[0; 4]; KernelAvx::MR];
loop_m!(i, loop4!(j, m[i][j] += 1));
for arr in &m[..] {
for elt in &arr[..] {
assert_eq!(*elt, 1);
}
}
}
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
mod test_arch_kernels {
use super::test_a_kernel;
use super::super::*;
#[cfg(features = "std")]
use std::println;
macro_rules! test_arch_kernels_x86 {
($($feature_name:tt, $name:ident, $kernel_ty:ty),*) => {
$(
#[test]
fn $name() {
if is_x86_feature_detected_!($feature_name) {
test_a_kernel::<$kernel_ty>(stringify!($name));
} else {
#[cfg(features = "std")]
println!("Skipping, host does not have feature: {:?}", $feature_name);
}
}
)*
}
}
test_arch_kernels_x86! {
"fma", fma, KernelFma,
"avx", avx, KernelAvx,
"sse2", sse2, KernelSse2
}
}
}