1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use crate::time::wheel::Stack;

use std::fmt;

/// Wheel for a single level in the timer. This wheel contains 64 slots.
pub(crate) struct Level<T> {
    level: usize,

    /// Bit field tracking which slots currently contain entries.
    ///
    /// Using a bit field to track slots that contain entries allows avoiding a
    /// scan to find entries. This field is updated when entries are added or
    /// removed from a slot.
    ///
    /// The least-significant bit represents slot zero.
    occupied: u64,

    /// Slots
    slot: [T; LEVEL_MULT],
}

/// Indicates when a slot must be processed next.
#[derive(Debug)]
pub(crate) struct Expiration {
    /// The level containing the slot.
    pub(crate) level: usize,

    /// The slot index.
    pub(crate) slot: usize,

    /// The instant at which the slot needs to be processed.
    pub(crate) deadline: u64,
}

/// Level multiplier.
///
/// Being a power of 2 is very important.
const LEVEL_MULT: usize = 64;

impl<T: Stack> Level<T> {
    pub(crate) fn new(level: usize) -> Level<T> {
        // Rust's derived implementations for arrays require that the value
        // contained by the array be `Copy`. So, here we have to manually
        // initialize every single slot.
        macro_rules! s {
            () => {
                T::default()
            };
        };

        Level {
            level,
            occupied: 0,
            slot: [
                // It does not look like the necessary traits are
                // derived for [T; 64].
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
                s!(),
            ],
        }
    }

    /// Finds the slot that needs to be processed next and returns the slot and
    /// `Instant` at which this slot must be processed.
    pub(crate) fn next_expiration(&self, now: u64) -> Option<Expiration> {
        // Use the `occupied` bit field to get the index of the next slot that
        // needs to be processed.
        let slot = match self.next_occupied_slot(now) {
            Some(slot) => slot,
            None => return None,
        };

        // From the slot index, calculate the `Instant` at which it needs to be
        // processed. This value *must* be in the future with respect to `now`.

        let level_range = level_range(self.level);
        let slot_range = slot_range(self.level);

        // TODO: This can probably be simplified w/ power of 2 math
        let level_start = now - (now % level_range);
        let deadline = level_start + slot as u64 * slot_range;

        debug_assert!(
            deadline >= now,
            "deadline={}; now={}; level={}; slot={}; occupied={:b}",
            deadline,
            now,
            self.level,
            slot,
            self.occupied
        );

        Some(Expiration {
            level: self.level,
            slot,
            deadline,
        })
    }

    fn next_occupied_slot(&self, now: u64) -> Option<usize> {
        if self.occupied == 0 {
            return None;
        }

        // Get the slot for now using Maths
        let now_slot = (now / slot_range(self.level)) as usize;
        let occupied = self.occupied.rotate_right(now_slot as u32);
        let zeros = occupied.trailing_zeros() as usize;
        let slot = (zeros + now_slot) % 64;

        Some(slot)
    }

    pub(crate) fn add_entry(&mut self, when: u64, item: T::Owned, store: &mut T::Store) {
        let slot = slot_for(when, self.level);

        self.slot[slot].push(item, store);
        self.occupied |= occupied_bit(slot);
    }

    pub(crate) fn remove_entry(&mut self, when: u64, item: &T::Borrowed, store: &mut T::Store) {
        let slot = slot_for(when, self.level);

        self.slot[slot].remove(item, store);

        if self.slot[slot].is_empty() {
            // The bit is currently set
            debug_assert!(self.occupied & occupied_bit(slot) != 0);

            // Unset the bit
            self.occupied ^= occupied_bit(slot);
        }
    }

    pub(crate) fn pop_entry_slot(&mut self, slot: usize, store: &mut T::Store) -> Option<T::Owned> {
        let ret = self.slot[slot].pop(store);

        if ret.is_some() && self.slot[slot].is_empty() {
            // The bit is currently set
            debug_assert!(self.occupied & occupied_bit(slot) != 0);

            self.occupied ^= occupied_bit(slot);
        }

        ret
    }
}

impl<T> fmt::Debug for Level<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Level")
            .field("occupied", &self.occupied)
            .finish()
    }
}

fn occupied_bit(slot: usize) -> u64 {
    1 << slot
}

fn slot_range(level: usize) -> u64 {
    LEVEL_MULT.pow(level as u32) as u64
}

fn level_range(level: usize) -> u64 {
    LEVEL_MULT as u64 * slot_range(level)
}

/// Convert a duration (milliseconds) and a level to a slot position
fn slot_for(duration: u64, level: usize) -> usize {
    ((duration >> (level * 6)) % LEVEL_MULT as u64) as usize
}

/*
#[cfg(all(test, not(loom)))]
mod test {
    use super::*;

    #[test]
    fn test_slot_for() {
        for pos in 1..64 {
            assert_eq!(pos as usize, slot_for(pos, 0));
        }

        for level in 1..5 {
            for pos in level..64 {
                let a = pos * 64_usize.pow(level as u32);
                assert_eq!(pos as usize, slot_for(a as u64, level));
            }
        }
    }
}
*/