1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
//! Data flow graph tracking Instructions, Values, and blocks.

use crate::entity::{self, PrimaryMap, SecondaryMap};
use crate::ir;
use crate::ir::builder::ReplaceBuilder;
use crate::ir::extfunc::ExtFuncData;
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionData};
use crate::ir::{types, ConstantData, ConstantPool, Immediate};
use crate::ir::{
    Block, FuncRef, Inst, SigRef, Signature, Type, Value, ValueLabelAssignments, ValueList,
    ValueListPool,
};
use crate::isa::TargetIsa;
use crate::packed_option::ReservedValue;
use crate::write::write_operands;
use crate::HashMap;
use alloc::vec::Vec;
use core::fmt;
use core::iter;
use core::mem;
use core::ops::{Index, IndexMut};
use core::u16;

/// A data flow graph defines all instructions and basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or block parameters.
///
/// The layout of blocks in the function and of instructions in each block is recorded by the
/// `Layout` data structure which forms the other half of the function representation.
///
#[derive(Clone)]
pub struct DataFlowGraph {
    /// Data about all of the instructions in the function, including opcodes and operands.
    /// The instructions in this map are not in program order. That is tracked by `Layout`, along
    /// with the block containing each instruction.
    insts: PrimaryMap<Inst, InstructionData>,

    /// List of result values for each instruction.
    ///
    /// This map gets resized automatically by `make_inst()` so it is always in sync with the
    /// primary `insts` map.
    results: SecondaryMap<Inst, ValueList>,

    /// basic blocks in the function and their parameters.
    ///
    /// This map is not in program order. That is handled by `Layout`, and so is the sequence of
    /// instructions contained in each block.
    blocks: PrimaryMap<Block, BlockData>,

    /// Memory pool of value lists.
    ///
    /// The `ValueList` references into this pool appear in many places:
    ///
    /// - Instructions in `insts` that don't have room for their entire argument list inline.
    /// - Instruction result values in `results`.
    /// - block parameters in `blocks`.
    pub value_lists: ValueListPool,

    /// Primary value table with entries for all values.
    values: PrimaryMap<Value, ValueData>,

    /// Function signature table. These signatures are referenced by indirect call instructions as
    /// well as the external function references.
    pub signatures: PrimaryMap<SigRef, Signature>,

    /// The pre-legalization signature for each entry in `signatures`, if any.
    pub old_signatures: SecondaryMap<SigRef, Option<Signature>>,

    /// External function references. These are functions that can be called directly.
    pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,

    /// Saves Value labels.
    pub values_labels: Option<HashMap<Value, ValueLabelAssignments>>,

    /// Constants used within the function
    pub constants: ConstantPool,

    /// Stores large immediates that otherwise will not fit on InstructionData
    pub immediates: PrimaryMap<Immediate, ConstantData>,
}

impl DataFlowGraph {
    /// Create a new empty `DataFlowGraph`.
    pub fn new() -> Self {
        Self {
            insts: PrimaryMap::new(),
            results: SecondaryMap::new(),
            blocks: PrimaryMap::new(),
            value_lists: ValueListPool::new(),
            values: PrimaryMap::new(),
            signatures: PrimaryMap::new(),
            old_signatures: SecondaryMap::new(),
            ext_funcs: PrimaryMap::new(),
            values_labels: None,
            constants: ConstantPool::new(),
            immediates: PrimaryMap::new(),
        }
    }

    /// Clear everything.
    pub fn clear(&mut self) {
        self.insts.clear();
        self.results.clear();
        self.blocks.clear();
        self.value_lists.clear();
        self.values.clear();
        self.signatures.clear();
        self.old_signatures.clear();
        self.ext_funcs.clear();
        self.values_labels = None;
        self.constants.clear();
        self.immediates.clear();
    }

    /// Get the total number of instructions created in this function, whether they are currently
    /// inserted in the layout or not.
    ///
    /// This is intended for use with `SecondaryMap::with_capacity`.
    pub fn num_insts(&self) -> usize {
        self.insts.len()
    }

    /// Returns `true` if the given instruction reference is valid.
    pub fn inst_is_valid(&self, inst: Inst) -> bool {
        self.insts.is_valid(inst)
    }

    /// Get the total number of basic blocks created in this function, whether they are
    /// currently inserted in the layout or not.
    ///
    /// This is intended for use with `SecondaryMap::with_capacity`.
    pub fn num_blocks(&self) -> usize {
        self.blocks.len()
    }

    /// Returns `true` if the given block reference is valid.
    pub fn block_is_valid(&self, block: Block) -> bool {
        self.blocks.is_valid(block)
    }

    /// Get the total number of values.
    pub fn num_values(&self) -> usize {
        self.values.len()
    }

    /// Starts collection of debug information.
    pub fn collect_debug_info(&mut self) {
        if self.values_labels.is_none() {
            self.values_labels = Some(HashMap::new());
        }
    }
}

/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases, or None if an
/// alias cycle is detected.
fn maybe_resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Option<Value> {
    let mut v = value;

    // Note that values may be empty here.
    for _ in 0..=values.len() {
        if let ValueData::Alias { original, .. } = values[v] {
            v = original;
        } else {
            return Some(v);
        }
    }

    None
}

/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
fn resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Value {
    if let Some(v) = maybe_resolve_aliases(values, value) {
        v
    } else {
        panic!("Value alias loop detected for {}", value);
    }
}

/// Iterator over all Values in a DFG
pub struct Values<'a> {
    inner: entity::Iter<'a, Value, ValueData>,
}

/// Check for non-values
fn valid_valuedata(data: &ValueData) -> bool {
    if let ValueData::Alias {
        ty: types::INVALID,
        original,
    } = *data
    {
        if original == Value::reserved_value() {
            return false;
        }
    }
    true
}

impl<'a> Iterator for Values<'a> {
    type Item = Value;

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .by_ref()
            .find(|kv| valid_valuedata(kv.1))
            .map(|kv| kv.0)
    }
}

/// Handling values.
///
/// Values are either block parameters or instruction results.
impl DataFlowGraph {
    /// Allocate an extended value entry.
    fn make_value(&mut self, data: ValueData) -> Value {
        self.values.push(data)
    }

    /// Get an iterator over all values.
    pub fn values<'a>(&'a self) -> Values {
        Values {
            inner: self.values.iter(),
        }
    }

    /// Check if a value reference is valid.
    pub fn value_is_valid(&self, v: Value) -> bool {
        self.values.is_valid(v)
    }

    /// Get the type of a value.
    pub fn value_type(&self, v: Value) -> Type {
        self.values[v].ty()
    }

    /// Get the definition of a value.
    ///
    /// This is either the instruction that defined it or the Block that has the value as an
    /// parameter.
    pub fn value_def(&self, v: Value) -> ValueDef {
        match self.values[v] {
            ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
            ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
            ValueData::Alias { original, .. } => {
                // Make sure we only recurse one level. `resolve_aliases` has safeguards to
                // detect alias loops without overrunning the stack.
                self.value_def(self.resolve_aliases(original))
            }
        }
    }

    /// Determine if `v` is an attached instruction result / block parameter.
    ///
    /// An attached value can't be attached to something else without first being detached.
    ///
    /// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
    /// determine if the original aliased value is attached.
    pub fn value_is_attached(&self, v: Value) -> bool {
        use self::ValueData::*;
        match self.values[v] {
            Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
            Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
            Alias { .. } => false,
        }
    }

    /// Resolve value aliases.
    ///
    /// Find the original SSA value that `value` aliases.
    pub fn resolve_aliases(&self, value: Value) -> Value {
        resolve_aliases(&self.values, value)
    }

    /// Resolve all aliases among inst's arguments.
    ///
    /// For each argument of inst which is defined by an alias, replace the
    /// alias with the aliased value.
    pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
        for arg in self.insts[inst].arguments_mut(&mut self.value_lists) {
            let resolved = resolve_aliases(&self.values, *arg);
            if resolved != *arg {
                *arg = resolved;
            }
        }
    }

    /// Turn a value into an alias of another.
    ///
    /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
    /// will behave as if they used that value `src`.
    ///
    /// The `dest` value can't be attached to an instruction or block.
    pub fn change_to_alias(&mut self, dest: Value, src: Value) {
        debug_assert!(!self.value_is_attached(dest));
        // Try to create short alias chains by finding the original source value.
        // This also avoids the creation of loops.
        let original = self.resolve_aliases(src);
        debug_assert_ne!(
            dest, original,
            "Aliasing {} to {} would create a loop",
            dest, src
        );
        let ty = self.value_type(original);
        debug_assert_eq!(
            self.value_type(dest),
            ty,
            "Aliasing {} to {} would change its type {} to {}",
            dest,
            src,
            self.value_type(dest),
            ty
        );
        debug_assert_ne!(ty, types::INVALID);

        self.values[dest] = ValueData::Alias { ty, original };
    }

    /// Replace the results of one instruction with aliases to the results of another.
    ///
    /// Change all the results of `dest_inst` to behave as aliases of
    /// corresponding results of `src_inst`, as if calling change_to_alias for
    /// each.
    ///
    /// After calling this instruction, `dest_inst` will have had its results
    /// cleared, so it likely needs to be removed from the graph.
    ///
    pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
        debug_assert_ne!(
            dest_inst, src_inst,
            "Replacing {} with itself would create a loop",
            dest_inst
        );
        debug_assert_eq!(
            self.results[dest_inst].len(&self.value_lists),
            self.results[src_inst].len(&self.value_lists),
            "Replacing {} with {} would produce a different number of results.",
            dest_inst,
            src_inst
        );

        for (&dest, &src) in self.results[dest_inst]
            .as_slice(&self.value_lists)
            .iter()
            .zip(self.results[src_inst].as_slice(&self.value_lists))
        {
            let original = src;
            let ty = self.value_type(original);
            debug_assert_eq!(
                self.value_type(dest),
                ty,
                "Aliasing {} to {} would change its type {} to {}",
                dest,
                src,
                self.value_type(dest),
                ty
            );
            debug_assert_ne!(ty, types::INVALID);

            self.values[dest] = ValueData::Alias { ty, original };
        }

        self.clear_results(dest_inst);
    }
}

/// Where did a value come from?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueDef {
    /// Value is the n'th result of an instruction.
    Result(Inst, usize),
    /// Value is the n'th parameter to a block.
    Param(Block, usize),
}

impl ValueDef {
    /// Unwrap the instruction where the value was defined, or panic.
    pub fn unwrap_inst(&self) -> Inst {
        self.inst().expect("Value is not an instruction result")
    }

    /// Get the instruction where the value was defined, if any.
    pub fn inst(&self) -> Option<Inst> {
        match *self {
            Self::Result(inst, _) => Some(inst),
            _ => None,
        }
    }

    /// Unwrap the block there the parameter is defined, or panic.
    pub fn unwrap_block(&self) -> Block {
        match *self {
            Self::Param(block, _) => block,
            _ => panic!("Value is not a block parameter"),
        }
    }

    /// Get the program point where the value was defined.
    pub fn pp(self) -> ir::ExpandedProgramPoint {
        self.into()
    }

    /// Get the number component of this definition.
    ///
    /// When multiple values are defined at the same program point, this indicates the index of
    /// this value.
    pub fn num(self) -> usize {
        match self {
            Self::Result(_, n) | Self::Param(_, n) => n,
        }
    }
}

/// Internal table storage for extended values.
#[derive(Clone, Debug)]
enum ValueData {
    /// Value is defined by an instruction.
    Inst { ty: Type, num: u16, inst: Inst },

    /// Value is a block parameter.
    Param { ty: Type, num: u16, block: Block },

    /// Value is an alias of another value.
    /// An alias value can't be linked as an instruction result or block parameter. It is used as a
    /// placeholder when the original instruction or block has been rewritten or modified.
    Alias { ty: Type, original: Value },
}

impl ValueData {
    fn ty(&self) -> Type {
        match *self {
            ValueData::Inst { ty, .. }
            | ValueData::Param { ty, .. }
            | ValueData::Alias { ty, .. } => ty,
        }
    }
}

/// Instructions.
///
impl DataFlowGraph {
    /// Create a new instruction.
    ///
    /// The type of the first result is indicated by `data.ty`. If the instruction produces
    /// multiple results, also call `make_inst_results` to allocate value table entries.
    pub fn make_inst(&mut self, data: InstructionData) -> Inst {
        let n = self.num_insts() + 1;
        self.results.resize(n);
        self.insts.push(data)
    }

    /// Returns an object that displays `inst`.
    pub fn display_inst<'a, I: Into<Option<&'a dyn TargetIsa>>>(
        &'a self,
        inst: Inst,
        isa: I,
    ) -> DisplayInst<'a> {
        DisplayInst(self, isa.into(), inst)
    }

    /// Get all value arguments on `inst` as a slice.
    pub fn inst_args(&self, inst: Inst) -> &[Value] {
        self.insts[inst].arguments(&self.value_lists)
    }

    /// Get all value arguments on `inst` as a mutable slice.
    pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        self.insts[inst].arguments_mut(&mut self.value_lists)
    }

    /// Get the fixed value arguments on `inst` as a slice.
    pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &self.inst_args(inst)[..num_fixed_args]
    }

    /// Get the fixed value arguments on `inst` as a mutable slice.
    pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &mut self.inst_args_mut(inst)[..num_fixed_args]
    }

    /// Get the variable value arguments on `inst` as a slice.
    pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &self.inst_args(inst)[num_fixed_args..]
    }

    /// Get the variable value arguments on `inst` as a mutable slice.
    pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &mut self.inst_args_mut(inst)[num_fixed_args..]
    }

    /// Create result values for an instruction that produces multiple results.
    ///
    /// Instructions that produce no result values only need to be created with `make_inst`,
    /// otherwise call `make_inst_results` to allocate value table entries for the results.
    ///
    /// The result value types are determined from the instruction's value type constraints and the
    /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
    /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
    ///
    /// The type of the first result value is also set, even if it was already set in the
    /// `InstructionData` passed to `make_inst`. If this function is called with a single-result
    /// instruction, that is the only effect.
    pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
        self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
    }

    /// Create result values for `inst`, reusing the provided detached values.
    ///
    /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
    /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
    /// produces `None`, a new value is created.
    pub fn make_inst_results_reusing<I>(
        &mut self,
        inst: Inst,
        ctrl_typevar: Type,
        reuse: I,
    ) -> usize
    where
        I: Iterator<Item = Option<Value>>,
    {
        let mut reuse = reuse.fuse();

        self.results[inst].clear(&mut self.value_lists);

        // Get the call signature if this is a function call.
        if let Some(sig) = self.call_signature(inst) {
            // Create result values corresponding to the call return types.
            debug_assert_eq!(
                self.insts[inst].opcode().constraints().num_fixed_results(),
                0
            );
            let num_results = self.signatures[sig].returns.len();
            for res_idx in 0..num_results {
                let ty = self.signatures[sig].returns[res_idx].value_type;
                if let Some(Some(v)) = reuse.next() {
                    debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
                    self.attach_result(inst, v);
                } else {
                    self.append_result(inst, ty);
                }
            }
            num_results
        } else {
            // Create result values corresponding to the opcode's constraints.
            let constraints = self.insts[inst].opcode().constraints();
            let num_results = constraints.num_fixed_results();
            for res_idx in 0..num_results {
                let ty = constraints.result_type(res_idx, ctrl_typevar);
                if let Some(Some(v)) = reuse.next() {
                    debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
                    self.attach_result(inst, v);
                } else {
                    self.append_result(inst, ty);
                }
            }
            num_results
        }
    }

    /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
    pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
        ReplaceBuilder::new(self, inst)
    }

    /// Detach the list of result values from `inst` and return it.
    ///
    /// This leaves `inst` without any result values. New result values can be created by calling
    /// `make_inst_results` or by using a `replace(inst)` builder.
    pub fn detach_results(&mut self, inst: Inst) -> ValueList {
        self.results[inst].take()
    }

    /// Clear the list of result values from `inst`.
    ///
    /// This leaves `inst` without any result values. New result values can be created by calling
    /// `make_inst_results` or by using a `replace(inst)` builder.
    pub fn clear_results(&mut self, inst: Inst) {
        self.results[inst].clear(&mut self.value_lists)
    }

    /// Attach an existing value to the result value list for `inst`.
    ///
    /// The `res` value is appended to the end of the result list.
    ///
    /// This is a very low-level operation. Usually, instruction results with the correct types are
    /// created automatically. The `res` value must not be attached to anything else.
    pub fn attach_result(&mut self, inst: Inst, res: Value) {
        debug_assert!(!self.value_is_attached(res));
        let num = self.results[inst].push(res, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many result values");
        let ty = self.value_type(res);
        self.values[res] = ValueData::Inst {
            ty,
            num: num as u16,
            inst,
        };
    }

    /// Replace an instruction result with a new value of type `new_type`.
    ///
    /// The `old_value` must be an attached instruction result.
    ///
    /// The old value is left detached, so it should probably be changed into something else.
    ///
    /// Returns the new value.
    pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
        let (num, inst) = match self.values[old_value] {
            ValueData::Inst { num, inst, .. } => (num, inst),
            _ => panic!("{} is not an instruction result value", old_value),
        };
        let new_value = self.make_value(ValueData::Inst {
            ty: new_type,
            num,
            inst,
        });
        let num = num as usize;
        let attached = mem::replace(
            self.results[inst]
                .get_mut(num, &mut self.value_lists)
                .expect("Replacing detached result"),
            new_value,
        );
        debug_assert_eq!(
            attached,
            old_value,
            "{} wasn't detached from {}",
            old_value,
            self.display_inst(inst, None)
        );
        new_value
    }

    /// Append a new instruction result value to `inst`.
    pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
        let res = self.values.next_key();
        let num = self.results[inst].push(res, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many result values");
        self.make_value(ValueData::Inst {
            ty,
            inst,
            num: num as u16,
        })
    }

    /// Append a new value argument to an instruction.
    ///
    /// Panics if the instruction doesn't support arguments.
    pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
        let mut branch_values = self.insts[inst]
            .take_value_list()
            .expect("the instruction doesn't have value arguments");
        branch_values.push(new_arg, &mut self.value_lists);
        self.insts[inst].put_value_list(branch_values)
    }

    /// Get the first result of an instruction.
    ///
    /// This function panics if the instruction doesn't have any result.
    pub fn first_result(&self, inst: Inst) -> Value {
        self.results[inst]
            .first(&self.value_lists)
            .expect("Instruction has no results")
    }

    /// Test if `inst` has any result values currently.
    pub fn has_results(&self, inst: Inst) -> bool {
        !self.results[inst].is_empty()
    }

    /// Return all the results of an instruction.
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.results[inst].as_slice(&self.value_lists)
    }

    /// Get the call signature of a direct or indirect call instruction.
    /// Returns `None` if `inst` is not a call instruction.
    pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
        match self.insts[inst].analyze_call(&self.value_lists) {
            CallInfo::NotACall => None,
            CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
            CallInfo::Indirect(s, _) => Some(s),
        }
    }

    /// Check if `inst` is a branch.
    pub fn analyze_branch(&self, inst: Inst) -> BranchInfo {
        self.insts[inst].analyze_branch(&self.value_lists)
    }

    /// Compute the type of an instruction result from opcode constraints and call signatures.
    ///
    /// This computes the same sequence of result types that `make_inst_results()` above would
    /// assign to the created result values, but it does not depend on `make_inst_results()` being
    /// called first.
    ///
    /// Returns `None` if asked about a result index that is too large.
    pub fn compute_result_type(
        &self,
        inst: Inst,
        result_idx: usize,
        ctrl_typevar: Type,
    ) -> Option<Type> {
        let constraints = self.insts[inst].opcode().constraints();
        let num_fixed_results = constraints.num_fixed_results();

        if result_idx < num_fixed_results {
            return Some(constraints.result_type(result_idx, ctrl_typevar));
        }

        // Not a fixed result, try to extract a return type from the call signature.
        self.call_signature(inst).and_then(|sigref| {
            self.signatures[sigref]
                .returns
                .get(result_idx - num_fixed_results)
                .map(|&arg| arg.value_type)
        })
    }

    /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
    pub fn ctrl_typevar(&self, inst: Inst) -> Type {
        let constraints = self[inst].opcode().constraints();

        if !constraints.is_polymorphic() {
            types::INVALID
        } else if constraints.requires_typevar_operand() {
            // Not all instruction formats have a designated operand, but in that case
            // `requires_typevar_operand()` should never be true.
            self.value_type(
                self[inst]
                    .typevar_operand(&self.value_lists)
                    .expect("Instruction format doesn't have a designated operand, bad opcode."),
            )
        } else {
            self.value_type(self.first_result(inst))
        }
    }
}

/// Allow immutable access to instructions via indexing.
impl Index<Inst> for DataFlowGraph {
    type Output = InstructionData;

    fn index(&self, inst: Inst) -> &InstructionData {
        &self.insts[inst]
    }
}

/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for DataFlowGraph {
    fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
        &mut self.insts[inst]
    }
}

/// basic blocks.
impl DataFlowGraph {
    /// Create a new basic block.
    pub fn make_block(&mut self) -> Block {
        self.blocks.push(BlockData::new())
    }

    /// Get the number of parameters on `block`.
    pub fn num_block_params(&self, block: Block) -> usize {
        self.blocks[block].params.len(&self.value_lists)
    }

    /// Get the parameters on `block`.
    pub fn block_params(&self, block: Block) -> &[Value] {
        self.blocks[block].params.as_slice(&self.value_lists)
    }

    /// Get the types of the parameters on `block`.
    pub fn block_param_types(&self, block: Block) -> Vec<Type> {
        self.block_params(block)
            .iter()
            .map(|&v| self.value_type(v))
            .collect()
    }

    /// Append a parameter with type `ty` to `block`.
    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
        let param = self.values.next_key();
        let num = self.blocks[block].params.push(param, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
        self.make_value(ValueData::Param {
            ty,
            num: num as u16,
            block,
        })
    }

    /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
    /// Returns the position of `val` before removal.
    ///
    /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
    /// last `block` parameter. This can disrupt all the branch instructions jumping to this
    /// `block` for which you have to change the branch argument order if necessary.
    ///
    /// Panics if `val` is not a block parameter.
    pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
        let (block, num) = if let ValueData::Param { num, block, .. } = self.values[val] {
            (block, num)
        } else {
            panic!("{} must be a block parameter", val);
        };
        self.blocks[block]
            .params
            .swap_remove(num as usize, &mut self.value_lists);
        if let Some(last_arg_val) = self.blocks[block]
            .params
            .get(num as usize, &self.value_lists)
        {
            // We update the position of the old last arg.
            if let ValueData::Param {
                num: ref mut old_num,
                ..
            } = self.values[last_arg_val]
            {
                *old_num = num;
            } else {
                panic!("{} should be a Block parameter", last_arg_val);
            }
        }
        num as usize
    }

    /// Removes `val` from `block`'s parameters by a standard linear time list removal which
    /// preserves ordering. Also updates the values' data.
    pub fn remove_block_param(&mut self, val: Value) {
        let (block, num) = if let ValueData::Param { num, block, .. } = self.values[val] {
            (block, num)
        } else {
            panic!("{} must be a block parameter", val);
        };
        self.blocks[block]
            .params
            .remove(num as usize, &mut self.value_lists);
        for index in num..(self.num_block_params(block) as u16) {
            match self.values[self.blocks[block]
                .params
                .get(index as usize, &self.value_lists)
                .unwrap()]
            {
                ValueData::Param { ref mut num, .. } => {
                    *num -= 1;
                }
                _ => panic!(
                    "{} must be a block parameter",
                    self.blocks[block]
                        .params
                        .get(index as usize, &self.value_lists)
                        .unwrap()
                ),
            }
        }
    }

    /// Append an existing value to `block`'s parameters.
    ///
    /// The appended value can't already be attached to something else.
    ///
    /// In almost all cases, you should be using `append_block_param()` instead of this method.
    pub fn attach_block_param(&mut self, block: Block, param: Value) {
        debug_assert!(!self.value_is_attached(param));
        let num = self.blocks[block].params.push(param, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
        let ty = self.value_type(param);
        self.values[param] = ValueData::Param {
            ty,
            num: num as u16,
            block,
        };
    }

    /// Replace a block parameter with a new value of type `ty`.
    ///
    /// The `old_value` must be an attached block parameter. It is removed from its place in the list
    /// of parameters and replaced by a new value of type `new_type`. The new value gets the same
    /// position in the list, and other parameters are not disturbed.
    ///
    /// The old value is left detached, so it should probably be changed into something else.
    ///
    /// Returns the new value.
    pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
        // Create new value identical to the old one except for the type.
        let (block, num) = if let ValueData::Param { num, block, .. } = self.values[old_value] {
            (block, num)
        } else {
            panic!("{} must be a block parameter", old_value);
        };
        let new_arg = self.make_value(ValueData::Param {
            ty: new_type,
            num,
            block,
        });

        self.blocks[block]
            .params
            .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
        new_arg
    }

    /// Detach all the parameters from `block` and return them as a `ValueList`.
    ///
    /// This is a quite low-level operation. Sensible things to do with the detached block parameters
    /// is to put them back on the same block with `attach_block_param()` or change them into aliases
    /// with `change_to_alias()`.
    pub fn detach_block_params(&mut self, block: Block) -> ValueList {
        self.blocks[block].params.take()
    }
}

/// Contents of a basic block.
///
/// Parameters on a basic block are values that dominate everything in the block. All
/// branches to this block must provide matching arguments, and the arguments to the entry block must
/// match the function arguments.
#[derive(Clone)]
struct BlockData {
    /// List of parameters to this block.
    params: ValueList,
}

impl BlockData {
    fn new() -> Self {
        Self {
            params: ValueList::new(),
        }
    }
}

/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Option<&'a dyn TargetIsa>, Inst);

impl<'a> fmt::Display for DisplayInst<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let dfg = self.0;
        let isa = self.1;
        let inst = self.2;

        if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
            write!(f, "{}", first)?;
            for v in rest {
                write!(f, ", {}", v)?;
            }
            write!(f, " = ")?;
        }

        let typevar = dfg.ctrl_typevar(inst);
        if typevar.is_invalid() {
            write!(f, "{}", dfg[inst].opcode())?;
        } else {
            write!(f, "{}.{}", dfg[inst].opcode(), typevar)?;
        }
        write_operands(f, dfg, isa, inst)
    }
}

/// Parser routines. These routines should not be used outside the parser.
impl DataFlowGraph {
    /// Set the type of a value. This is only for use in the parser, which needs
    /// to create invalid values for index padding which may be reassigned later.
    #[cold]
    fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
        assert_eq!(
            self.value_type(v),
            types::INVALID,
            "this function is only for assigning types to previously invalid values"
        );
        match self.values[v] {
            ValueData::Inst { ref mut ty, .. }
            | ValueData::Param { ref mut ty, .. }
            | ValueData::Alias { ref mut ty, .. } => *ty = t,
        }
    }

    /// Create result values for `inst`, reusing the provided detached values.
    /// This is similar to `make_inst_results_reusing` except it's only for use
    /// in the parser, which needs to reuse previously invalid values.
    #[cold]
    pub fn make_inst_results_for_parser(
        &mut self,
        inst: Inst,
        ctrl_typevar: Type,
        reuse: &[Value],
    ) -> usize {
        // Get the call signature if this is a function call.
        if let Some(sig) = self.call_signature(inst) {
            assert_eq!(
                self.insts[inst].opcode().constraints().num_fixed_results(),
                0
            );
            for res_idx in 0..self.signatures[sig].returns.len() {
                let ty = self.signatures[sig].returns[res_idx].value_type;
                if let Some(v) = reuse.get(res_idx) {
                    self.set_value_type_for_parser(*v, ty);
                }
            }
        } else {
            let constraints = self.insts[inst].opcode().constraints();
            for res_idx in 0..constraints.num_fixed_results() {
                let ty = constraints.result_type(res_idx, ctrl_typevar);
                if let Some(v) = reuse.get(res_idx) {
                    self.set_value_type_for_parser(*v, ty);
                }
            }
        }

        self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
    }

    /// Similar to `append_block_param`, append a parameter with type `ty` to
    /// `block`, but using value `val`. This is only for use by the parser to
    /// create parameters with specific values.
    #[cold]
    pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
        let num = self.blocks[block].params.push(val, &mut self.value_lists);
        assert!(num <= u16::MAX as usize, "Too many parameters on block");
        self.values[val] = ValueData::Param {
            ty,
            num: num as u16,
            block,
        };
    }

    /// Create a new value alias. This is only for use by the parser to create
    /// aliases with specific values, and the printer for testing.
    #[cold]
    pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
        assert_ne!(src, Value::reserved_value());
        assert_ne!(dest, Value::reserved_value());

        let ty = if self.values.is_valid(src) {
            self.value_type(src)
        } else {
            // As a special case, if we can't resolve the aliasee yet, use INVALID
            // temporarily. It will be resolved later in parsing.
            types::INVALID
        };
        let data = ValueData::Alias { ty, original: src };
        self.values[dest] = data;
    }

    /// If `v` is already defined as an alias, return its destination value.
    /// Otherwise return None. This allows the parser to coalesce identical
    /// alias definitions, and the printer to identify an alias's immediate target.
    #[cold]
    pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
        if let ValueData::Alias { original, .. } = self.values[v] {
            Some(original)
        } else {
            None
        }
    }

    /// Compute the type of an alias. This is only for use in the parser.
    /// Returns false if an alias cycle was encountered.
    #[cold]
    pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
        if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
            let old_ty = self.value_type(v);
            let new_ty = self.value_type(resolved);
            if old_ty == types::INVALID {
                self.set_value_type_for_parser(v, new_ty);
            } else {
                assert_eq!(old_ty, new_ty);
            }
            true
        } else {
            false
        }
    }

    /// Create an invalid value, to pad the index space. This is only for use by
    /// the parser to pad out the value index space.
    #[cold]
    pub fn make_invalid_value_for_parser(&mut self) {
        let data = ValueData::Alias {
            ty: types::INVALID,
            original: Value::reserved_value(),
        };
        self.make_value(data);
    }

    /// Check if a value reference is valid, while being aware of aliases which
    /// may be unresolved while parsing.
    #[cold]
    pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
        if !self.value_is_valid(v) {
            return false;
        }
        if let ValueData::Alias { ty, .. } = self.values[v] {
            ty != types::INVALID
        } else {
            true
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::cursor::{Cursor, FuncCursor};
    use crate::ir::types;
    use crate::ir::{Function, InstructionData, Opcode, TrapCode};
    use alloc::string::ToString;

    #[test]
    fn make_inst() {
        let mut dfg = DataFlowGraph::new();

        let idata = InstructionData::UnaryImm {
            opcode: Opcode::Iconst,
            imm: 0.into(),
        };
        let inst = dfg.make_inst(idata);

        dfg.make_inst_results(inst, types::I32);
        assert_eq!(inst.to_string(), "inst0");
        assert_eq!(
            dfg.display_inst(inst, None).to_string(),
            "v0 = iconst.i32 0"
        );

        // Immutable reference resolution.
        {
            let immdfg = &dfg;
            let ins = &immdfg[inst];
            assert_eq!(ins.opcode(), Opcode::Iconst);
        }

        // Results.
        let val = dfg.first_result(inst);
        assert_eq!(dfg.inst_results(inst), &[val]);

        assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
        assert_eq!(dfg.value_type(val), types::I32);

        // Replacing results.
        assert!(dfg.value_is_attached(val));
        let v2 = dfg.replace_result(val, types::F64);
        assert!(!dfg.value_is_attached(val));
        assert!(dfg.value_is_attached(v2));
        assert_eq!(dfg.inst_results(inst), &[v2]);
        assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
        assert_eq!(dfg.value_type(v2), types::F64);
    }

    #[test]
    fn no_results() {
        let mut dfg = DataFlowGraph::new();

        let idata = InstructionData::Trap {
            opcode: Opcode::Trap,
            code: TrapCode::User(0),
        };
        let inst = dfg.make_inst(idata);
        assert_eq!(dfg.display_inst(inst, None).to_string(), "trap user0");

        // Result slice should be empty.
        assert_eq!(dfg.inst_results(inst), &[]);
    }

    #[test]
    fn block() {
        let mut dfg = DataFlowGraph::new();

        let block = dfg.make_block();
        assert_eq!(block.to_string(), "block0");
        assert_eq!(dfg.num_block_params(block), 0);
        assert_eq!(dfg.block_params(block), &[]);
        assert!(dfg.detach_block_params(block).is_empty());
        assert_eq!(dfg.num_block_params(block), 0);
        assert_eq!(dfg.block_params(block), &[]);

        let arg1 = dfg.append_block_param(block, types::F32);
        assert_eq!(arg1.to_string(), "v0");
        assert_eq!(dfg.num_block_params(block), 1);
        assert_eq!(dfg.block_params(block), &[arg1]);

        let arg2 = dfg.append_block_param(block, types::I16);
        assert_eq!(arg2.to_string(), "v1");
        assert_eq!(dfg.num_block_params(block), 2);
        assert_eq!(dfg.block_params(block), &[arg1, arg2]);

        assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
        assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
        assert_eq!(dfg.value_type(arg1), types::F32);
        assert_eq!(dfg.value_type(arg2), types::I16);

        // Swap the two block parameters.
        let vlist = dfg.detach_block_params(block);
        assert_eq!(dfg.num_block_params(block), 0);
        assert_eq!(dfg.block_params(block), &[]);
        assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
        dfg.attach_block_param(block, arg2);
        let arg3 = dfg.append_block_param(block, types::I32);
        dfg.attach_block_param(block, arg1);
        assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
    }

    #[test]
    fn replace_block_params() {
        let mut dfg = DataFlowGraph::new();

        let block = dfg.make_block();
        let arg1 = dfg.append_block_param(block, types::F32);

        let new1 = dfg.replace_block_param(arg1, types::I64);
        assert_eq!(dfg.value_type(arg1), types::F32);
        assert_eq!(dfg.value_type(new1), types::I64);
        assert_eq!(dfg.block_params(block), &[new1]);

        dfg.attach_block_param(block, arg1);
        assert_eq!(dfg.block_params(block), &[new1, arg1]);

        let new2 = dfg.replace_block_param(arg1, types::I8);
        assert_eq!(dfg.value_type(arg1), types::F32);
        assert_eq!(dfg.value_type(new2), types::I8);
        assert_eq!(dfg.block_params(block), &[new1, new2]);

        dfg.attach_block_param(block, arg1);
        assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);

        let new3 = dfg.replace_block_param(new2, types::I16);
        assert_eq!(dfg.value_type(new1), types::I64);
        assert_eq!(dfg.value_type(new2), types::I8);
        assert_eq!(dfg.value_type(new3), types::I16);
        assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
    }

    #[test]
    fn swap_remove_block_params() {
        let mut dfg = DataFlowGraph::new();

        let block = dfg.make_block();
        let arg1 = dfg.append_block_param(block, types::F32);
        let arg2 = dfg.append_block_param(block, types::F32);
        let arg3 = dfg.append_block_param(block, types::F32);
        assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);

        dfg.swap_remove_block_param(arg1);
        assert_eq!(dfg.value_is_attached(arg1), false);
        assert_eq!(dfg.value_is_attached(arg2), true);
        assert_eq!(dfg.value_is_attached(arg3), true);
        assert_eq!(dfg.block_params(block), &[arg3, arg2]);
        dfg.swap_remove_block_param(arg2);
        assert_eq!(dfg.value_is_attached(arg2), false);
        assert_eq!(dfg.value_is_attached(arg3), true);
        assert_eq!(dfg.block_params(block), &[arg3]);
        dfg.swap_remove_block_param(arg3);
        assert_eq!(dfg.value_is_attached(arg3), false);
        assert_eq!(dfg.block_params(block), &[]);
    }

    #[test]
    fn aliases() {
        use crate::ir::InstBuilder;

        let mut func = Function::new();
        let block0 = func.dfg.make_block();
        let mut pos = FuncCursor::new(&mut func);
        pos.insert_block(block0);

        // Build a little test program.
        let v1 = pos.ins().iconst(types::I32, 42);

        // Make sure we can resolve value aliases even when values is empty.
        assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);

        let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
        let (s, c) = pos.ins().iadd_ifcout(v1, arg0);
        let iadd = match pos.func.dfg.value_def(s) {
            ValueDef::Result(i, 0) => i,
            _ => panic!(),
        };

        // Remove `c` from the result list.
        pos.func.dfg.clear_results(iadd);
        pos.func.dfg.attach_result(iadd, s);

        // Replace `iadd_ifcout` with a normal `iadd` and an `ifcmp`.
        pos.func.dfg.replace(iadd).iadd(v1, arg0);
        let c2 = pos.ins().ifcmp(s, v1);
        pos.func.dfg.change_to_alias(c, c2);

        assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
        assert_eq!(pos.func.dfg.resolve_aliases(c), c2);

        // Make a copy of the alias.
        let c3 = pos.ins().copy(c);
        // This does not see through copies.
        assert_eq!(pos.func.dfg.resolve_aliases(c3), c3);
    }
}