1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
use crate::types::{ExportType, ExternType, ImportType};
use crate::{Engine, ModuleType};
use anyhow::{bail, Context, Result};
use bincode::Options;
use std::hash::Hash;
use std::path::Path;
use std::sync::Arc;
use wasmparser::Validator;
#[cfg(feature = "cache")]
use wasmtime_cache::ModuleCacheEntry;
use wasmtime_jit::{CompilationArtifacts, CompiledModule, TypeTables};
/// A compiled WebAssembly module, ready to be instantiated.
///
/// A `Module` is a compiled in-memory representation of an input WebAssembly
/// binary. A `Module` is then used to create an [`Instance`](crate::Instance)
/// through an instantiation process. You cannot call functions or fetch
/// globals, for example, on a `Module` because it's purely a code
/// representation. Instead you'll need to create an
/// [`Instance`](crate::Instance) to interact with the wasm module.
///
/// Creating a `Module` currently involves compiling code, meaning that it can
/// be an expensive operation. All `Module` instances are compiled according to
/// the configuration in [`Config`], but typically they're JIT-compiled. If
/// you'd like to instantiate a module multiple times you can do so with
/// compiling the original wasm module only once with a single [`Module`]
/// instance.
///
/// The `Module` is threadsafe and safe to share accross threads.
///
/// ## Modules and `Clone`
///
/// Using `clone` on a `Module` is a cheap operation. It will not create an
/// entirely new module, but rather just a new reference to the existing module.
/// In other words it's a shallow copy, not a deep copy.
///
/// ## Examples
///
/// There are a number of ways you can create a `Module`, for example pulling
/// the bytes from a number of locations. One example is loading a module from
/// the filesystem:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// let module = Module::from_file(&engine, "path/to/foo.wasm")?;
/// # Ok(())
/// # }
/// ```
///
/// You can also load the wasm text format if more convenient too:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// // Now we're using the WebAssembly text extension: `.wat`!
/// let module = Module::from_file(&engine, "path/to/foo.wat")?;
/// # Ok(())
/// # }
/// ```
///
/// And if you've already got the bytes in-memory you can use the
/// [`Module::new`] constructor:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// # let wasm_bytes: Vec<u8> = Vec::new();
/// let module = Module::new(&engine, &wasm_bytes)?;
///
/// // It also works with the text format!
/// let module = Module::new(&engine, "(module (func))")?;
/// # Ok(())
/// # }
/// ```
///
/// [`Config`]: crate::Config
#[derive(Clone)]
pub struct Module {
engine: Engine,
data: Arc<ModuleData>,
index: usize,
}
pub(crate) struct ModuleData {
pub(crate) types: Arc<TypeTables>,
pub(crate) modules: Vec<CompiledModule>,
}
impl Module {
/// Creates a new WebAssembly `Module` from the given in-memory `bytes`.
///
/// The `bytes` provided must be in one of two formats:
///
/// * It can be a [binary-encoded][binary] WebAssembly module. This
/// is always supported.
/// * It may also be a [text-encoded][text] instance of the WebAssembly
/// text format. This is only supported when the `wat` feature of this
/// crate is enabled. If this is supplied then the text format will be
/// parsed before validation. Note that the `wat` feature is enabled by
/// default.
///
/// The data for the wasm module must be loaded in-memory if it's present
/// elsewhere, for example on disk. This requires that the entire binary is
/// loaded into memory all at once, this API does not support streaming
/// compilation of a module.
///
/// The WebAssembly binary will be decoded and validated. It will also be
/// compiled according to the configuration of the provided `engine`.
///
/// # Errors
///
/// This function may fail and return an error. Errors may include
/// situations such as:
///
/// * The binary provided could not be decoded because it's not a valid
/// WebAssembly binary
/// * The WebAssembly binary may not validate (e.g. contains type errors)
/// * Implementation-specific limits were exceeded with a valid binary (for
/// example too many locals)
/// * The wasm binary may use features that are not enabled in the
/// configuration of `enging`
/// * If the `wat` feature is enabled and the input is text, then it may be
/// rejected if it fails to parse.
///
/// The error returned should contain full information about why module
/// creation failed if one is returned.
///
/// [binary]: https://webassembly.github.io/spec/core/binary/index.html
/// [text]: https://webassembly.github.io/spec/core/text/index.html
///
/// # Examples
///
/// The `new` function can be invoked with a in-memory array of bytes:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// # let wasm_bytes: Vec<u8> = Vec::new();
/// let module = Module::new(&engine, &wasm_bytes)?;
/// # Ok(())
/// # }
/// ```
///
/// Or you can also pass in a string to be parsed as the wasm text
/// format:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module (func))")?;
/// # Ok(())
/// # }
/// ```
pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
#[cfg(feature = "wat")]
let bytes = wat::parse_bytes(bytes.as_ref())?;
Module::from_binary(engine, bytes.as_ref())
}
/// Creates a new WebAssembly `Module` from the given in-memory `binary`
/// data. The provided `name` will be used in traps/backtrace details.
///
/// See [`Module::new`] for other details.
pub fn new_with_name(engine: &Engine, bytes: impl AsRef<[u8]>, name: &str) -> Result<Module> {
let mut module = Module::new(engine, bytes.as_ref())?;
Arc::get_mut(&mut module.data).unwrap().modules[module.index]
.module_mut()
.expect("mutable module")
.name = Some(name.to_string());
Ok(module)
}
/// Creates a new WebAssembly `Module` from the contents of the given
/// `file` on disk.
///
/// This is a convenience function that will read the `file` provided and
/// pass the bytes to the [`Module::new`] function. For more information
/// see [`Module::new`]
///
/// # Examples
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// let module = Module::from_file(&engine, "./path/to/foo.wasm")?;
/// # Ok(())
/// # }
/// ```
///
/// The `.wat` text format is also supported:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::from_file(&engine, "./path/to/foo.wat")?;
/// # Ok(())
/// # }
/// ```
pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
#[cfg(feature = "wat")]
let wasm = wat::parse_file(file)?;
#[cfg(not(feature = "wat"))]
let wasm = std::fs::read(file)?;
Module::new(engine, &wasm)
}
/// Creates a new WebAssembly `Module` from the given in-memory `binary`
/// data.
///
/// This is similar to [`Module::new`] except that it requires that the
/// `binary` input is a WebAssembly binary, the text format is not supported
/// by this function. It's generally recommended to use [`Module::new`],
/// but if it's required to not support the text format this function can be
/// used instead.
///
/// # Examples
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wasm = b"\0asm\x01\0\0\0";
/// let module = Module::from_binary(&engine, wasm)?;
/// # Ok(())
/// # }
/// ```
///
/// Note that the text format is **not** accepted by this function:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// assert!(Module::from_binary(&engine, b"(module)").is_err());
/// # Ok(())
/// # }
/// ```
pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Module> {
#[cfg(feature = "cache")]
let (artifacts, types) = ModuleCacheEntry::new("wasmtime", engine.cache_config())
.get_data((engine.compiler(), binary), |(compiler, binary)| {
CompilationArtifacts::build(compiler, binary)
})?;
#[cfg(not(feature = "cache"))]
let (artifacts, types) = CompilationArtifacts::build(engine.compiler(), binary)?;
let modules = CompiledModule::from_artifacts_list(
artifacts,
engine.compiler().isa(),
&*engine.config().profiler,
)?;
let types = Arc::new(types);
Ok(Module {
engine: engine.clone(),
index: 0,
data: Arc::new(ModuleData { types, modules }),
})
}
/// Validates `binary` input data as a WebAssembly binary given the
/// configuration in `engine`.
///
/// This function will perform a speedy validation of the `binary` input
/// WebAssembly module (which is in [binary form][binary], the text format
/// is not accepted by this function) and return either `Ok` or `Err`
/// depending on the results of validation. The `engine` argument indicates
/// configuration for WebAssembly features, for example, which are used to
/// indicate what should be valid and what shouldn't be.
///
/// Validation automatically happens as part of [`Module::new`].
///
/// # Errors
///
/// If validation fails for any reason (type check error, usage of a feature
/// that wasn't enabled, etc) then an error with a description of the
/// validation issue will be returned.
///
/// [binary]: https://webassembly.github.io/spec/core/binary/index.html
pub fn validate(engine: &Engine, binary: &[u8]) -> Result<()> {
let mut validator = Validator::new();
validator.wasm_features(engine.config().features);
validator.validate_all(binary)?;
Ok(())
}
/// Returns the type signature of this module.
pub fn ty(&self) -> ModuleType {
let mut sig = ModuleType::new();
let env_module = self.compiled_module().module();
let types = self.types();
for (module, field, ty) in env_module.imports() {
sig.add_named_import(module, field, ExternType::from_wasmtime(types, &ty));
}
for (name, index) in env_module.exports.iter() {
sig.add_named_export(
name,
ExternType::from_wasmtime(types, &env_module.type_of(*index)),
);
}
sig
}
/// Serialize compilation artifacts to the buffer. See also `deseriaize`.
pub fn serialize(&self) -> Result<Vec<u8>> {
let artifacts = (
compiler_fingerprint(&self.engine),
self.data
.modules
.iter()
.map(|i| i.compilation_artifacts())
.collect::<Vec<_>>(),
&*self.data.types,
self.index,
);
let buffer = bincode_options().serialize(&artifacts)?;
Ok(buffer)
}
/// Deserializes and creates a module from the compilation artifacts.
/// The `serialize` saves the compilation artifacts along with the host
/// fingerprint, which consists of target, compiler flags, and wasmtime
/// package version.
///
/// The method will fail if fingerprints of current host and serialized
/// one are different. The method does not verify the serialized artifacts
/// for modifications or curruptions. All responsibily of signing and its
/// verification falls on the embedder.
pub fn deserialize(engine: &Engine, serialized: &[u8]) -> Result<Module> {
let expected_fingerprint = compiler_fingerprint(engine);
let (fingerprint, artifacts, types, index) = bincode_options()
.deserialize::<(u64, _, _, _)>(serialized)
.context("Deserialize compilation artifacts")?;
if fingerprint != expected_fingerprint {
bail!("Incompatible compilation artifact");
}
let modules = CompiledModule::from_artifacts_list(
artifacts,
engine.compiler().isa(),
&*engine.config().profiler,
)?;
let types = Arc::new(types);
Ok(Module {
engine: engine.clone(),
index,
data: Arc::new(ModuleData { modules, types }),
})
}
pub(crate) fn compiled_module(&self) -> &CompiledModule {
&self.data.modules[self.index]
}
pub(crate) fn submodule(&self, index: usize) -> Module {
assert!(index < self.data.modules.len());
Module {
engine: self.engine.clone(),
data: self.data.clone(),
index,
}
}
pub(crate) fn types(&self) -> &Arc<TypeTables> {
&self.data.types
}
/// Returns identifier/name that this [`Module`] has. This name
/// is used in traps/backtrace details.
///
/// Note that most LLVM/clang/Rust-produced modules do not have a name
/// associated with them, but other wasm tooling can be used to inject or
/// add a name.
///
/// # Examples
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module $foo)")?;
/// assert_eq!(module.name(), Some("foo"));
///
/// let module = Module::new(&engine, "(module)")?;
/// assert_eq!(module.name(), None);
///
/// let module = Module::new_with_name(&engine, "(module)", "bar")?;
/// assert_eq!(module.name(), Some("bar"));
/// # Ok(())
/// # }
/// ```
pub fn name(&self) -> Option<&str> {
self.compiled_module().module().name.as_deref()
}
/// Returns the list of imports that this [`Module`] has and must be
/// satisfied.
///
/// This function returns the list of imports that the wasm module has, but
/// only the types of each import. The type of each import is used to
/// typecheck the [`Instance::new`](crate::Instance::new) method's `imports`
/// argument. The arguments to that function must match up 1-to-1 with the
/// entries in the array returned here.
///
/// The imports returned reflect the order of the imports in the wasm module
/// itself, and note that no form of deduplication happens.
///
/// # Examples
///
/// Modules with no imports return an empty list here:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module)")?;
/// assert_eq!(module.imports().len(), 0);
/// # Ok(())
/// # }
/// ```
///
/// and modules with imports will have a non-empty list:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wat = r#"
/// (module
/// (import "host" "foo" (func))
/// )
/// "#;
/// let module = Module::new(&engine, wat)?;
/// assert_eq!(module.imports().len(), 1);
/// let import = module.imports().next().unwrap();
/// assert_eq!(import.module(), "host");
/// assert_eq!(import.name(), Some("foo"));
/// match import.ty() {
/// ExternType::Func(_) => { /* ... */ }
/// _ => panic!("unexpected import type!"),
/// }
/// # Ok(())
/// # }
/// ```
pub fn imports<'module>(
&'module self,
) -> impl ExactSizeIterator<Item = ImportType<'module>> + 'module {
let module = self.compiled_module().module();
let types = self.types();
module
.imports()
.map(move |(module, field, ty)| ImportType::new(module, field, ty, types))
.collect::<Vec<_>>()
.into_iter()
}
/// Returns the list of exports that this [`Module`] has and will be
/// available after instantiation.
///
/// This function will return the type of each item that will be returned
/// from [`Instance::exports`](crate::Instance::exports). Each entry in this
/// list corresponds 1-to-1 with that list, and the entries here will
/// indicate the name of the export along with the type of the export.
///
/// # Examples
///
/// Modules might not have any exports:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module)")?;
/// assert!(module.exports().next().is_none());
/// # Ok(())
/// # }
/// ```
///
/// When the exports are not empty, you can inspect each export:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wat = r#"
/// (module
/// (func (export "foo"))
/// (memory (export "memory") 1)
/// )
/// "#;
/// let module = Module::new(&engine, wat)?;
/// assert_eq!(module.exports().len(), 2);
///
/// let mut exports = module.exports();
/// let foo = exports.next().unwrap();
/// assert_eq!(foo.name(), "foo");
/// match foo.ty() {
/// ExternType::Func(_) => { /* ... */ }
/// _ => panic!("unexpected export type!"),
/// }
///
/// let memory = exports.next().unwrap();
/// assert_eq!(memory.name(), "memory");
/// match memory.ty() {
/// ExternType::Memory(_) => { /* ... */ }
/// _ => panic!("unexpected export type!"),
/// }
/// # Ok(())
/// # }
/// ```
pub fn exports<'module>(
&'module self,
) -> impl ExactSizeIterator<Item = ExportType<'module>> + 'module {
let module = self.compiled_module().module();
let types = self.types();
module.exports.iter().map(move |(name, entity_index)| {
ExportType::new(name, module.type_of(*entity_index), types)
})
}
/// Looks up an export in this [`Module`] by name.
///
/// This function will return the type of an export with the given name.
///
/// # Examples
///
/// There may be no export with that name:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module)")?;
/// assert!(module.get_export("foo").is_none());
/// # Ok(())
/// # }
/// ```
///
/// When there is an export with that name, it is returned:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wat = r#"
/// (module
/// (func (export "foo"))
/// (memory (export "memory") 1)
/// )
/// "#;
/// let module = Module::new(&engine, wat)?;
/// let foo = module.get_export("foo");
/// assert!(foo.is_some());
///
/// let foo = foo.unwrap();
/// match foo {
/// ExternType::Func(_) => { /* ... */ }
/// _ => panic!("unexpected export type!"),
/// }
///
/// # Ok(())
/// # }
/// ```
pub fn get_export<'module>(&'module self, name: &'module str) -> Option<ExternType> {
let module = self.compiled_module().module();
let entity_index = module.exports.get(name)?;
Some(ExternType::from_wasmtime(
self.types(),
&module.type_of(*entity_index),
))
}
/// Returns the [`Engine`] that this [`Module`] was compiled by.
pub fn engine(&self) -> &Engine {
&self.engine
}
}
fn bincode_options() -> impl Options {
// Use a variable-length integer encoding instead of fixed length. The
// module shown on #2318 gets compressed from ~160MB to ~110MB simply using
// this, presumably because there's a lot of 8-byte integers which generally
// have small values. Local testing shows that the deserialization
// performance, while higher, is in the few-percent range. For huge size
// savings this seems worthwhile to lose a small percentage of
// deserialization performance.
bincode::DefaultOptions::new().with_varint_encoding()
}
fn compiler_fingerprint(engine: &Engine) -> u64 {
use std::hash::Hasher;
let mut hasher = std::collections::hash_map::DefaultHasher::new();
engine.compiler().hash(&mut hasher);
hasher.finish()
}
fn _assert_send_sync() {
fn _assert<T: Send + Sync>() {}
_assert::<Module>();
}