1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
//! Data structure representing the live range of an SSA value.
//!
//! Live ranges are tracked per SSA value, not per variable or virtual register. The live range of
//! an SSA value begins where it is defined and extends to all program points where the value is
//! still needed.
//!
//! # Local Live Ranges
//!
//! Inside a single basic block, the live range of a value is always an interval between
//! two program points (if the value is live in the block at all). The starting point is either:
//!
//! 1. The instruction that defines the value, or
//! 2. The block header, because the value is an argument to the block, or
//! 3. The block header, because the value is defined in another block and live-in to this one.
//!
//! The ending point of the local live range is the last of the following program points in the
//! block:
//!
//! 1. The last use in the block, where a *use* is an instruction that has the value as an argument.
//! 2. The last branch or jump instruction in the block that can reach a use.
//! 3. If the value has no uses anywhere (a *dead value*), the program point that defines it.
//!
//! Note that 2. includes loop back-edges to the same block. In general, if a value is defined
//! outside a loop and used inside the loop, it will be live in the entire loop.
//!
//! # Global Live Ranges
//!
//! Values that appear in more than one block have a *global live range* which can be seen as the
//! disjoint union of the per-block local intervals for all of the blocks where the value is live.
//! Together with a `ProgramOrder` which provides a linear ordering of the blocks, the global live
//! range becomes a linear sequence of disjoint intervals, at most one per block.
//!
//! In the special case of a dead value, the global live range is a single interval where the start
//! and end points are the same. The global live range of a value is never completely empty.
//!
//! # Register interference
//!
//! The register allocator uses live ranges to determine if values *interfere*, which means that
//! they can't be stored in the same register. Two live ranges interfere if and only if any of
//! their intervals overlap.
//!
//! If one live range ends at an instruction that defines another live range, those two live ranges
//! are not considered to interfere. This is because most ISAs allow instructions to reuse an input
//! register for an output value. If Cranelift gets support for inline assembly, we will need to
//! handle *early clobbers* which are output registers that are not allowed to alias any input
//! registers.
//!
//! If `i1 < i2 < i3` are program points, we have:
//!
//! - `i1-i2` and `i1-i3` interfere because the intervals overlap.
//! - `i1-i2` and `i2-i3` don't interfere.
//! - `i1-i3` and `i2-i2` do interfere because the dead def would clobber the register.
//! - `i1-i2` and `i2-i2` don't interfere.
//! - `i2-i3` and `i2-i2` do interfere.
//!
//! Because of this behavior around interval end points, live range interference is not completely
//! equivalent to mathematical intersection of open or half-open intervals.
//!
//! # Implementation notes
//!
//! A few notes about the implementation of the live intervals field `liveins`. This should not
//! concern someone only looking to use the public interface.
//!
//! ## Current representation
//!
//! Our current implementation uses a sorted array of compressed intervals, represented by their
//! boundaries (Block, Inst), sorted by Block. This is a simple data structure, enables coalescing of
//! intervals easily, and shows some nice performance behavior. See
//! https://github.com/bytecodealliance/cranelift/issues/1084 for benchmarks against using a
//! bforest::Map<Block, Inst>.
//!
//! ## block ordering
//!
//! The relative order of blocks is used to maintain a sorted list of live-in intervals and to
//! coalesce adjacent live-in intervals when the prior interval covers the whole block. This doesn't
//! depend on any property of the program order, so alternative orderings are possible:
//!
//! 1. The block layout order. This is what we currently use.
//! 2. A topological order of the dominator tree. All the live-in intervals would come after the
//!    def interval.
//! 3. A numerical order by block number. Performant because it doesn't need to indirect through the
//!    `ProgramOrder` for comparisons.
//!
//! These orderings will cause small differences in coalescing opportunities, but all of them would
//! do a decent job of compressing a long live range. The numerical order might be preferable
//! because:
//!
//! - It has better performance because block numbers can be compared directly without any table
//!   lookups.
//! - If block numbers are not reused, it is safe to allocate new blocks without getting spurious
//!   live-in intervals from any coalesced representations that happen to cross a new block.
//!
//! For comparing instructions, the layout order is always what we want.
//!
//! ## Alternative representation
//!
//! Since a local live-in interval always begins at its block header, it is uniquely described by its
//! end point instruction alone. We can use the layout to look up the block containing the end point.
//! This means that a sorted `Vec<Inst>` would be enough to represent the set of live-in intervals.
//!
//! Coalescing is an important compression technique because some live ranges can span thousands of
//! blocks. We can represent that by switching to a sorted `Vec<ProgramPoint>` representation where
//! an `[Block, Inst]` pair represents a coalesced range, while an `Inst` entry without a preceding
//! `Block` entry represents a single live-in interval.
//!
//! This representation is more compact for a live range with many uncoalesced live-in intervals.
//! It is more complicated to work with, though, so it is probably not worth it. The performance
//! benefits of switching to a numerical block order only appears if the binary search is doing
//! block-block comparisons.
//!
//! A `BTreeMap<Block, Inst>` could have been used for the live-in intervals, but it doesn't provide
//! the necessary API to make coalescing easy, nor does it optimize for our types' sizes.
//!
//! Even the specialized `bforest::Map<Block, Inst>` implementation is slower than a plain sorted
//! array, see https://github.com/bytecodealliance/cranelift/issues/1084 for details.

use crate::entity::SparseMapValue;
use crate::ir::{Block, ExpandedProgramPoint, Inst, Layout, ProgramOrder, ProgramPoint, Value};
use crate::regalloc::affinity::Affinity;
use core::cmp::Ordering;
use core::marker::PhantomData;
use smallvec::SmallVec;

/// Global live range of a single SSA value.
///
/// As [explained in the module documentation](index.html#local-live-ranges), the live range of an
/// SSA value is the disjoint union of a set of intervals, each local to a single block, and with at
/// most one interval per block. We further distinguish between:
///
/// 1. The *def interval* is the local interval in the block where the value is defined, and
/// 2. The *live-in intervals* are the local intervals in the remaining blocks.
///
/// A live-in interval always begins at the block header, while the def interval can begin at the
/// defining instruction, or at the block header for a block argument value.
///
/// All values have a def interval, but a large proportion of values don't have any live-in
/// intervals. These are called *local live ranges*.
///
/// # Program order requirements
///
/// The internal representation of a `LiveRange` depends on a consistent `ProgramOrder` both for
/// ordering instructions inside a block *and* for ordering blocks. The methods that depend on the
/// ordering take an explicit `ProgramOrder` object, and it is the caller's responsibility to
/// ensure that the provided ordering is consistent between calls.
///
/// In particular, changing the order of blocks or inserting new blocks will invalidate live ranges.
///
/// Inserting new instructions in the layout is safe, but removing instructions is not. Besides the
/// instructions using or defining their value, `LiveRange` structs can contain references to
/// branch and jump instructions.
pub type LiveRange = GenericLiveRange<Layout>;

// See comment of liveins below.
pub struct Interval {
    begin: Block,
    end: Inst,
}

/// Generic live range implementation.
///
/// The intended generic parameter is `PO=Layout`, but tests are simpler with a mock order.
/// Use `LiveRange` instead of using this generic directly.
pub struct GenericLiveRange<PO: ProgramOrder> {
    /// The value described by this live range.
    /// This member can't be modified in case the live range is stored in a `SparseMap`.
    value: Value,

    /// The preferred register allocation for this value.
    pub affinity: Affinity,

    /// The instruction or block header where this value is defined.
    def_begin: ProgramPoint,

    /// The end point of the def interval. This must always belong to the same block as `def_begin`.
    ///
    /// We always have `def_begin <= def_end` with equality implying a dead def live range with no
    /// uses.
    def_end: ProgramPoint,

    /// Additional live-in intervals sorted in program order.
    ///
    /// This vector is empty for most values which are only used in one block.
    ///
    /// An entry `block -> inst` means that the live range is live-in to `block`, continuing up to
    /// `inst` which may belong to a later block in the program order.
    ///
    /// The entries are non-overlapping, and none of them overlap the block where the value is
    /// defined.
    liveins: SmallVec<[Interval; 2]>,

    po: PhantomData<*const PO>,
}

/// A simple helper macro to make comparisons more natural to read.
macro_rules! cmp {
    ($order:ident, $a:ident > $b:expr) => {
        $order.cmp($a, $b) == Ordering::Greater
    };
    ($order:ident, $a:ident >= $b:expr) => {
        $order.cmp($a, $b) != Ordering::Less
    };
    ($order:ident, $a:ident < $b:expr) => {
        $order.cmp($a, $b) == Ordering::Less
    };
    ($order:ident, $a:ident <= $b:expr) => {
        $order.cmp($a, $b) != Ordering::Greater
    };
}

impl<PO: ProgramOrder> GenericLiveRange<PO> {
    /// Create a new live range for `value` defined at `def`.
    ///
    /// The live range will be created as dead, but it can be extended with `extend_in_block()`.
    pub fn new(value: Value, def: ProgramPoint, affinity: Affinity) -> Self {
        Self {
            value,
            affinity,
            def_begin: def,
            def_end: def,
            liveins: SmallVec::new(),
            po: PhantomData,
        }
    }

    /// Finds an entry in the compressed set of live-in intervals that contains `block`, or return
    /// the position where to insert such a new entry.
    fn lookup_entry_containing_block(&self, block: Block, order: &PO) -> Result<usize, usize> {
        self.liveins
            .binary_search_by(|interval| order.cmp(interval.begin, block))
            .or_else(|n| {
                // The previous interval's end might cover the searched block.
                if n > 0 && cmp!(order, block <= self.liveins[n - 1].end) {
                    Ok(n - 1)
                } else {
                    Err(n)
                }
            })
    }

    /// Extend the local interval for `block` so it reaches `to` which must belong to `block`.
    /// Create a live-in interval if necessary.
    ///
    /// If the live range already has a local interval in `block`, extend its end point so it
    /// includes `to`, and return false.
    ///
    /// If the live range did not previously have a local interval in `block`, add one so the value
    /// is live-in to `block`, extending to `to`. Return true.
    ///
    /// The return value can be used to detect if we just learned that the value is live-in to
    /// `block`. This can trigger recursive extensions in `block`'s CFG predecessor blocks.
    pub fn extend_in_block(&mut self, block: Block, inst: Inst, order: &PO) -> bool {
        // First check if we're extending the def interval.
        //
        // We're assuming here that `inst` never precedes `def_begin` in the same block, but we can't
        // check it without a method for getting `inst`'s block.
        if cmp!(order, block <= self.def_end) && cmp!(order, inst >= self.def_begin) {
            let inst_pp = inst.into();
            debug_assert_ne!(
                inst_pp, self.def_begin,
                "Can't use value in the defining instruction."
            );
            if cmp!(order, inst > self.def_end) {
                self.def_end = inst_pp;
            }
            return false;
        }

        // Now check if we're extending any of the existing live-in intervals.
        match self.lookup_entry_containing_block(block, order) {
            Ok(n) => {
                // We found one interval and might need to extend it.
                if cmp!(order, inst <= self.liveins[n].end) {
                    // Both interval parts are already included in a compressed interval.
                    return false;
                }

                // If the instruction at the end is the last instruction before the next block,
                // coalesce the two intervals:
                // [ival.begin; ival.end] + [next.begin; next.end] = [ival.begin; next.end]
                if let Some(next) = &self.liveins.get(n + 1) {
                    if order.is_block_gap(inst, next.begin) {
                        // At this point we can choose to remove the current interval or the next
                        // one; remove the next one to avoid one memory move.
                        let next_end = next.end;
                        debug_assert!(cmp!(order, next_end > self.liveins[n].end));
                        self.liveins[n].end = next_end;
                        self.liveins.remove(n + 1);
                        return false;
                    }
                }

                // We can't coalesce, just extend the interval.
                self.liveins[n].end = inst;
                false
            }

            Err(n) => {
                // No interval was found containing the current block: we need to insert a new one,
                // unless there's a coalescing opportunity with the previous or next one.
                let coalesce_next = self
                    .liveins
                    .get(n)
                    .filter(|next| order.is_block_gap(inst, next.begin))
                    .is_some();
                let coalesce_prev = self
                    .liveins
                    .get(n.wrapping_sub(1))
                    .filter(|prev| order.is_block_gap(prev.end, block))
                    .is_some();

                match (coalesce_prev, coalesce_next) {
                    // The new interval is the missing hole between prev and next: we can merge
                    // them all together.
                    (true, true) => {
                        let prev_end = self.liveins[n - 1].end;
                        debug_assert!(cmp!(order, prev_end <= self.liveins[n].end));
                        self.liveins[n - 1].end = self.liveins[n].end;
                        self.liveins.remove(n);
                    }

                    // Coalesce only with the previous or next one.
                    (true, false) => {
                        debug_assert!(cmp!(order, inst >= self.liveins[n - 1].end));
                        self.liveins[n - 1].end = inst;
                    }
                    (false, true) => {
                        debug_assert!(cmp!(order, block <= self.liveins[n].begin));
                        self.liveins[n].begin = block;
                    }

                    (false, false) => {
                        // No coalescing opportunity, we have to insert.
                        self.liveins.insert(
                            n,
                            Interval {
                                begin: block,
                                end: inst,
                            },
                        );
                    }
                }

                true
            }
        }
    }

    /// Is this the live range of a dead value?
    ///
    /// A dead value has no uses, and its live range ends at the same program point where it is
    /// defined.
    pub fn is_dead(&self) -> bool {
        self.def_begin == self.def_end
    }

    /// Is this a local live range?
    ///
    /// A local live range is only used in the same block where it was defined. It is allowed to span
    /// multiple basic blocks within that block.
    pub fn is_local(&self) -> bool {
        self.liveins.is_empty()
    }

    /// Get the program point where this live range is defined.
    ///
    /// This will be a block header when the value is a block argument, otherwise it is the defining
    /// instruction.
    pub fn def(&self) -> ProgramPoint {
        self.def_begin
    }

    /// Move the definition of this value to a new program point.
    ///
    /// It is only valid to move the definition within the same block, and it can't be moved beyond
    /// `def_local_end()`.
    pub fn move_def_locally(&mut self, def: ProgramPoint) {
        self.def_begin = def;
    }

    /// Get the local end-point of this live range in the block where it is defined.
    ///
    /// This can be the block header itself in the case of a dead block argument.
    /// Otherwise, it will be the last local use or branch/jump that can reach a use.
    pub fn def_local_end(&self) -> ProgramPoint {
        self.def_end
    }

    /// Get the local end-point of this live range in a block where it is live-in.
    ///
    /// If this live range is not live-in to `block`, return `None`. Otherwise, return the end-point
    /// of this live range's local interval in `block`.
    ///
    /// If the live range is live through all of `block`, the terminator of `block` is a correct
    /// answer, but it is also possible that an even later program point is returned. So don't
    /// depend on the returned `Inst` to belong to `block`.
    pub fn livein_local_end(&self, block: Block, order: &PO) -> Option<Inst> {
        self.lookup_entry_containing_block(block, order)
            .and_then(|i| {
                let inst = self.liveins[i].end;
                if cmp!(order, block < inst) {
                    Ok(inst)
                } else {
                    // Can be any error type, really, since it's discarded by ok().
                    Err(i)
                }
            })
            .ok()
    }

    /// Is this value live-in to `block`?
    ///
    /// A block argument is not considered to be live in.
    pub fn is_livein(&self, block: Block, order: &PO) -> bool {
        self.livein_local_end(block, order).is_some()
    }

    /// Get all the live-in intervals.
    ///
    /// Note that the intervals are stored in a compressed form so each entry may span multiple
    /// blocks where the value is live in.
    pub fn liveins<'a>(&'a self) -> impl Iterator<Item = (Block, Inst)> + 'a {
        self.liveins
            .iter()
            .map(|interval| (interval.begin, interval.end))
    }

    /// Check if this live range overlaps a definition in `block`.
    pub fn overlaps_def(&self, def: ExpandedProgramPoint, block: Block, order: &PO) -> bool {
        // Two defs at the same program point always overlap, even if one is dead.
        if def == self.def_begin.into() {
            return true;
        }

        // Check for an overlap with the local range.
        if cmp!(order, def >= self.def_begin) && cmp!(order, def < self.def_end) {
            return true;
        }

        // Check for an overlap with a live-in range.
        match self.livein_local_end(block, order) {
            Some(inst) => cmp!(order, def < inst),
            None => false,
        }
    }

    /// Check if this live range reaches a use at `user` in `block`.
    pub fn reaches_use(&self, user: Inst, block: Block, order: &PO) -> bool {
        // Check for an overlap with the local range.
        if cmp!(order, user > self.def_begin) && cmp!(order, user <= self.def_end) {
            return true;
        }

        // Check for an overlap with a live-in range.
        match self.livein_local_end(block, order) {
            Some(inst) => cmp!(order, user <= inst),
            None => false,
        }
    }

    /// Check if this live range is killed at `user` in `block`.
    pub fn killed_at(&self, user: Inst, block: Block, order: &PO) -> bool {
        self.def_local_end() == user.into() || self.livein_local_end(block, order) == Some(user)
    }
}

/// Allow a `LiveRange` to be stored in a `SparseMap` indexed by values.
impl<PO: ProgramOrder> SparseMapValue<Value> for GenericLiveRange<PO> {
    fn key(&self) -> Value {
        self.value
    }
}

#[cfg(test)]
mod tests {
    use super::{GenericLiveRange, Interval};
    use crate::entity::EntityRef;
    use crate::ir::{Block, Inst, Value};
    use crate::ir::{ExpandedProgramPoint, ProgramOrder};
    use alloc::vec::Vec;
    use core::cmp::Ordering;

    // Dummy program order which simply compares indexes.
    // It is assumed that blocks have indexes that are multiples of 10, and instructions have indexes
    // in between. `is_block_gap` assumes that terminator instructions have indexes of the form
    // block * 10 + 1. This is used in the coalesce test.
    struct ProgOrder {}

    impl ProgramOrder for ProgOrder {
        fn cmp<A, B>(&self, a: A, b: B) -> Ordering
        where
            A: Into<ExpandedProgramPoint>,
            B: Into<ExpandedProgramPoint>,
        {
            fn idx(pp: ExpandedProgramPoint) -> usize {
                match pp {
                    ExpandedProgramPoint::Inst(i) => i.index(),
                    ExpandedProgramPoint::Block(e) => e.index(),
                }
            }

            let ia = idx(a.into());
            let ib = idx(b.into());
            ia.cmp(&ib)
        }

        fn is_block_gap(&self, inst: Inst, block: Block) -> bool {
            inst.index() % 10 == 1 && block.index() / 10 == inst.index() / 10 + 1
        }
    }

    impl ProgOrder {
        // Get the block corresponding to `inst`.
        fn inst_block(&self, inst: Inst) -> Block {
            let i = inst.index();
            Block::new(i - i % 10)
        }

        // Get the block of a program point.
        fn pp_block<PP: Into<ExpandedProgramPoint>>(&self, pp: PP) -> Block {
            match pp.into() {
                ExpandedProgramPoint::Inst(i) => self.inst_block(i),
                ExpandedProgramPoint::Block(e) => e,
            }
        }

        // Validate the live range invariants.
        fn validate(&self, lr: &GenericLiveRange<Self>) {
            // The def interval must cover a single block.
            let def_block = self.pp_block(lr.def_begin);
            assert_eq!(def_block, self.pp_block(lr.def_end));

            // Check that the def interval isn't backwards.
            match self.cmp(lr.def_begin, lr.def_end) {
                Ordering::Equal => assert!(lr.liveins.is_empty()),
                Ordering::Greater => {
                    panic!("Backwards def interval: {}-{}", lr.def_begin, lr.def_end)
                }
                Ordering::Less => {}
            }

            // Check the live-in intervals.
            let mut prev_end = None;
            for Interval { begin, end } in lr.liveins.iter() {
                let begin = *begin;
                let end = *end;

                assert_eq!(self.cmp(begin, end), Ordering::Less);
                if let Some(e) = prev_end {
                    assert_eq!(self.cmp(e, begin), Ordering::Less);
                }

                assert!(
                    self.cmp(lr.def_end, begin) == Ordering::Less
                        || self.cmp(lr.def_begin, end) == Ordering::Greater,
                    "Interval can't overlap the def block"
                );

                // Save for next round.
                prev_end = Some(end);
            }
        }
    }

    // Singleton `ProgramOrder` for tests below.
    const PO: &'static ProgOrder = &ProgOrder {};

    #[test]
    fn dead_def_range() {
        let v0 = Value::new(0);
        let e0 = Block::new(0);
        let i1 = Inst::new(1);
        let i2 = Inst::new(2);
        let e2 = Block::new(2);
        let lr = GenericLiveRange::new(v0, i1.into(), Default::default());
        assert!(lr.is_dead());
        assert!(lr.is_local());
        assert_eq!(lr.def(), i1.into());
        assert_eq!(lr.def_local_end(), i1.into());
        assert_eq!(lr.livein_local_end(e2, PO), None);
        PO.validate(&lr);

        // A dead live range overlaps its own def program point.
        assert!(lr.overlaps_def(i1.into(), e0, PO));
        assert!(!lr.overlaps_def(i2.into(), e0, PO));
        assert!(!lr.overlaps_def(e0.into(), e0, PO));
    }

    #[test]
    fn dead_arg_range() {
        let v0 = Value::new(0);
        let e2 = Block::new(2);
        let lr = GenericLiveRange::new(v0, e2.into(), Default::default());
        assert!(lr.is_dead());
        assert!(lr.is_local());
        assert_eq!(lr.def(), e2.into());
        assert_eq!(lr.def_local_end(), e2.into());
        // The def interval of a block argument does not count as live-in.
        assert_eq!(lr.livein_local_end(e2, PO), None);
        PO.validate(&lr);
    }

    #[test]
    fn local_def() {
        let v0 = Value::new(0);
        let e10 = Block::new(10);
        let i11 = Inst::new(11);
        let i12 = Inst::new(12);
        let i13 = Inst::new(13);
        let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());

        assert_eq!(lr.extend_in_block(e10, i13, PO), false);
        PO.validate(&lr);
        assert!(!lr.is_dead());
        assert!(lr.is_local());
        assert_eq!(lr.def(), i11.into());
        assert_eq!(lr.def_local_end(), i13.into());

        // Extending to an already covered inst should not change anything.
        assert_eq!(lr.extend_in_block(e10, i12, PO), false);
        PO.validate(&lr);
        assert_eq!(lr.def(), i11.into());
        assert_eq!(lr.def_local_end(), i13.into());
    }

    #[test]
    fn local_arg() {
        let v0 = Value::new(0);
        let e10 = Block::new(10);
        let i11 = Inst::new(11);
        let i12 = Inst::new(12);
        let i13 = Inst::new(13);
        let mut lr = GenericLiveRange::new(v0, e10.into(), Default::default());

        // Extending a dead block argument in its own block should not indicate that a live-in
        // interval was created.
        assert_eq!(lr.extend_in_block(e10, i12, PO), false);
        PO.validate(&lr);
        assert!(!lr.is_dead());
        assert!(lr.is_local());
        assert_eq!(lr.def(), e10.into());
        assert_eq!(lr.def_local_end(), i12.into());

        // Extending to an already covered inst should not change anything.
        assert_eq!(lr.extend_in_block(e10, i11, PO), false);
        PO.validate(&lr);
        assert_eq!(lr.def(), e10.into());
        assert_eq!(lr.def_local_end(), i12.into());

        // Extending further.
        assert_eq!(lr.extend_in_block(e10, i13, PO), false);
        PO.validate(&lr);
        assert_eq!(lr.def(), e10.into());
        assert_eq!(lr.def_local_end(), i13.into());
    }

    #[test]
    fn global_def() {
        let v0 = Value::new(0);
        let e10 = Block::new(10);
        let i11 = Inst::new(11);
        let i12 = Inst::new(12);
        let e20 = Block::new(20);
        let i21 = Inst::new(21);
        let i22 = Inst::new(22);
        let i23 = Inst::new(23);
        let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());

        assert_eq!(lr.extend_in_block(e10, i12, PO), false);

        // Adding a live-in interval.
        assert_eq!(lr.extend_in_block(e20, i22, PO), true);
        PO.validate(&lr);
        assert_eq!(lr.livein_local_end(e20, PO), Some(i22));

        // Non-extending the live-in.
        assert_eq!(lr.extend_in_block(e20, i21, PO), false);
        assert_eq!(lr.livein_local_end(e20, PO), Some(i22));

        // Extending the existing live-in.
        assert_eq!(lr.extend_in_block(e20, i23, PO), false);
        PO.validate(&lr);
        assert_eq!(lr.livein_local_end(e20, PO), Some(i23));
    }

    #[test]
    fn coalesce() {
        let v0 = Value::new(0);
        let i11 = Inst::new(11);
        let e20 = Block::new(20);
        let i21 = Inst::new(21);
        let e30 = Block::new(30);
        let i31 = Inst::new(31);
        let e40 = Block::new(40);
        let i41 = Inst::new(41);
        let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());

        assert_eq!(lr.extend_in_block(e30, i31, PO,), true);
        assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e30, i31)]);

        // Coalesce to previous
        assert_eq!(lr.extend_in_block(e40, i41, PO,), true);
        assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e30, i41)]);

        // Coalesce to next
        assert_eq!(lr.extend_in_block(e20, i21, PO,), true);
        assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e20, i41)]);

        let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());

        assert_eq!(lr.extend_in_block(e40, i41, PO,), true);
        assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e40, i41)]);

        assert_eq!(lr.extend_in_block(e20, i21, PO,), true);
        assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e20, i21), (e40, i41)]);

        // Coalesce to previous and next
        assert_eq!(lr.extend_in_block(e30, i31, PO,), true);
        assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e20, i41)]);
    }
}