1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
//! Data structure representing the live range of an SSA value.
//!
//! Live ranges are tracked per SSA value, not per variable or virtual register. The live range of
//! an SSA value begins where it is defined and extends to all program points where the value is
//! still needed.
//!
//! # Local Live Ranges
//!
//! Inside a single basic block, the live range of a value is always an interval between
//! two program points (if the value is live in the block at all). The starting point is either:
//!
//! 1. The instruction that defines the value, or
//! 2. The block header, because the value is an argument to the block, or
//! 3. The block header, because the value is defined in another block and live-in to this one.
//!
//! The ending point of the local live range is the last of the following program points in the
//! block:
//!
//! 1. The last use in the block, where a *use* is an instruction that has the value as an argument.
//! 2. The last branch or jump instruction in the block that can reach a use.
//! 3. If the value has no uses anywhere (a *dead value*), the program point that defines it.
//!
//! Note that 2. includes loop back-edges to the same block. In general, if a value is defined
//! outside a loop and used inside the loop, it will be live in the entire loop.
//!
//! # Global Live Ranges
//!
//! Values that appear in more than one block have a *global live range* which can be seen as the
//! disjoint union of the per-block local intervals for all of the blocks where the value is live.
//! Together with a `ProgramOrder` which provides a linear ordering of the blocks, the global live
//! range becomes a linear sequence of disjoint intervals, at most one per block.
//!
//! In the special case of a dead value, the global live range is a single interval where the start
//! and end points are the same. The global live range of a value is never completely empty.
//!
//! # Register interference
//!
//! The register allocator uses live ranges to determine if values *interfere*, which means that
//! they can't be stored in the same register. Two live ranges interfere if and only if any of
//! their intervals overlap.
//!
//! If one live range ends at an instruction that defines another live range, those two live ranges
//! are not considered to interfere. This is because most ISAs allow instructions to reuse an input
//! register for an output value. If Cranelift gets support for inline assembly, we will need to
//! handle *early clobbers* which are output registers that are not allowed to alias any input
//! registers.
//!
//! If `i1 < i2 < i3` are program points, we have:
//!
//! - `i1-i2` and `i1-i3` interfere because the intervals overlap.
//! - `i1-i2` and `i2-i3` don't interfere.
//! - `i1-i3` and `i2-i2` do interfere because the dead def would clobber the register.
//! - `i1-i2` and `i2-i2` don't interfere.
//! - `i2-i3` and `i2-i2` do interfere.
//!
//! Because of this behavior around interval end points, live range interference is not completely
//! equivalent to mathematical intersection of open or half-open intervals.
//!
//! # Implementation notes
//!
//! A few notes about the implementation of the live intervals field `liveins`. This should not
//! concern someone only looking to use the public interface.
//!
//! ## Current representation
//!
//! Our current implementation uses a sorted array of compressed intervals, represented by their
//! boundaries (Block, Inst), sorted by Block. This is a simple data structure, enables coalescing of
//! intervals easily, and shows some nice performance behavior. See
//! https://github.com/bytecodealliance/cranelift/issues/1084 for benchmarks against using a
//! bforest::Map<Block, Inst>.
//!
//! ## block ordering
//!
//! The relative order of blocks is used to maintain a sorted list of live-in intervals and to
//! coalesce adjacent live-in intervals when the prior interval covers the whole block. This doesn't
//! depend on any property of the program order, so alternative orderings are possible:
//!
//! 1. The block layout order. This is what we currently use.
//! 2. A topological order of the dominator tree. All the live-in intervals would come after the
//! def interval.
//! 3. A numerical order by block number. Performant because it doesn't need to indirect through the
//! `ProgramOrder` for comparisons.
//!
//! These orderings will cause small differences in coalescing opportunities, but all of them would
//! do a decent job of compressing a long live range. The numerical order might be preferable
//! because:
//!
//! - It has better performance because block numbers can be compared directly without any table
//! lookups.
//! - If block numbers are not reused, it is safe to allocate new blocks without getting spurious
//! live-in intervals from any coalesced representations that happen to cross a new block.
//!
//! For comparing instructions, the layout order is always what we want.
//!
//! ## Alternative representation
//!
//! Since a local live-in interval always begins at its block header, it is uniquely described by its
//! end point instruction alone. We can use the layout to look up the block containing the end point.
//! This means that a sorted `Vec<Inst>` would be enough to represent the set of live-in intervals.
//!
//! Coalescing is an important compression technique because some live ranges can span thousands of
//! blocks. We can represent that by switching to a sorted `Vec<ProgramPoint>` representation where
//! an `[Block, Inst]` pair represents a coalesced range, while an `Inst` entry without a preceding
//! `Block` entry represents a single live-in interval.
//!
//! This representation is more compact for a live range with many uncoalesced live-in intervals.
//! It is more complicated to work with, though, so it is probably not worth it. The performance
//! benefits of switching to a numerical block order only appears if the binary search is doing
//! block-block comparisons.
//!
//! A `BTreeMap<Block, Inst>` could have been used for the live-in intervals, but it doesn't provide
//! the necessary API to make coalescing easy, nor does it optimize for our types' sizes.
//!
//! Even the specialized `bforest::Map<Block, Inst>` implementation is slower than a plain sorted
//! array, see https://github.com/bytecodealliance/cranelift/issues/1084 for details.
use crate::entity::SparseMapValue;
use crate::ir::{Block, ExpandedProgramPoint, Inst, Layout, ProgramOrder, ProgramPoint, Value};
use crate::regalloc::affinity::Affinity;
use core::cmp::Ordering;
use core::marker::PhantomData;
use smallvec::SmallVec;
/// Global live range of a single SSA value.
///
/// As [explained in the module documentation](index.html#local-live-ranges), the live range of an
/// SSA value is the disjoint union of a set of intervals, each local to a single block, and with at
/// most one interval per block. We further distinguish between:
///
/// 1. The *def interval* is the local interval in the block where the value is defined, and
/// 2. The *live-in intervals* are the local intervals in the remaining blocks.
///
/// A live-in interval always begins at the block header, while the def interval can begin at the
/// defining instruction, or at the block header for a block argument value.
///
/// All values have a def interval, but a large proportion of values don't have any live-in
/// intervals. These are called *local live ranges*.
///
/// # Program order requirements
///
/// The internal representation of a `LiveRange` depends on a consistent `ProgramOrder` both for
/// ordering instructions inside a block *and* for ordering blocks. The methods that depend on the
/// ordering take an explicit `ProgramOrder` object, and it is the caller's responsibility to
/// ensure that the provided ordering is consistent between calls.
///
/// In particular, changing the order of blocks or inserting new blocks will invalidate live ranges.
///
/// Inserting new instructions in the layout is safe, but removing instructions is not. Besides the
/// instructions using or defining their value, `LiveRange` structs can contain references to
/// branch and jump instructions.
pub type LiveRange = GenericLiveRange<Layout>;
// See comment of liveins below.
pub struct Interval {
begin: Block,
end: Inst,
}
/// Generic live range implementation.
///
/// The intended generic parameter is `PO=Layout`, but tests are simpler with a mock order.
/// Use `LiveRange` instead of using this generic directly.
pub struct GenericLiveRange<PO: ProgramOrder> {
/// The value described by this live range.
/// This member can't be modified in case the live range is stored in a `SparseMap`.
value: Value,
/// The preferred register allocation for this value.
pub affinity: Affinity,
/// The instruction or block header where this value is defined.
def_begin: ProgramPoint,
/// The end point of the def interval. This must always belong to the same block as `def_begin`.
///
/// We always have `def_begin <= def_end` with equality implying a dead def live range with no
/// uses.
def_end: ProgramPoint,
/// Additional live-in intervals sorted in program order.
///
/// This vector is empty for most values which are only used in one block.
///
/// An entry `block -> inst` means that the live range is live-in to `block`, continuing up to
/// `inst` which may belong to a later block in the program order.
///
/// The entries are non-overlapping, and none of them overlap the block where the value is
/// defined.
liveins: SmallVec<[Interval; 2]>,
po: PhantomData<*const PO>,
}
/// A simple helper macro to make comparisons more natural to read.
macro_rules! cmp {
($order:ident, $a:ident > $b:expr) => {
$order.cmp($a, $b) == Ordering::Greater
};
($order:ident, $a:ident >= $b:expr) => {
$order.cmp($a, $b) != Ordering::Less
};
($order:ident, $a:ident < $b:expr) => {
$order.cmp($a, $b) == Ordering::Less
};
($order:ident, $a:ident <= $b:expr) => {
$order.cmp($a, $b) != Ordering::Greater
};
}
impl<PO: ProgramOrder> GenericLiveRange<PO> {
/// Create a new live range for `value` defined at `def`.
///
/// The live range will be created as dead, but it can be extended with `extend_in_block()`.
pub fn new(value: Value, def: ProgramPoint, affinity: Affinity) -> Self {
Self {
value,
affinity,
def_begin: def,
def_end: def,
liveins: SmallVec::new(),
po: PhantomData,
}
}
/// Finds an entry in the compressed set of live-in intervals that contains `block`, or return
/// the position where to insert such a new entry.
fn lookup_entry_containing_block(&self, block: Block, order: &PO) -> Result<usize, usize> {
self.liveins
.binary_search_by(|interval| order.cmp(interval.begin, block))
.or_else(|n| {
// The previous interval's end might cover the searched block.
if n > 0 && cmp!(order, block <= self.liveins[n - 1].end) {
Ok(n - 1)
} else {
Err(n)
}
})
}
/// Extend the local interval for `block` so it reaches `to` which must belong to `block`.
/// Create a live-in interval if necessary.
///
/// If the live range already has a local interval in `block`, extend its end point so it
/// includes `to`, and return false.
///
/// If the live range did not previously have a local interval in `block`, add one so the value
/// is live-in to `block`, extending to `to`. Return true.
///
/// The return value can be used to detect if we just learned that the value is live-in to
/// `block`. This can trigger recursive extensions in `block`'s CFG predecessor blocks.
pub fn extend_in_block(&mut self, block: Block, inst: Inst, order: &PO) -> bool {
// First check if we're extending the def interval.
//
// We're assuming here that `inst` never precedes `def_begin` in the same block, but we can't
// check it without a method for getting `inst`'s block.
if cmp!(order, block <= self.def_end) && cmp!(order, inst >= self.def_begin) {
let inst_pp = inst.into();
debug_assert_ne!(
inst_pp, self.def_begin,
"Can't use value in the defining instruction."
);
if cmp!(order, inst > self.def_end) {
self.def_end = inst_pp;
}
return false;
}
// Now check if we're extending any of the existing live-in intervals.
match self.lookup_entry_containing_block(block, order) {
Ok(n) => {
// We found one interval and might need to extend it.
if cmp!(order, inst <= self.liveins[n].end) {
// Both interval parts are already included in a compressed interval.
return false;
}
// If the instruction at the end is the last instruction before the next block,
// coalesce the two intervals:
// [ival.begin; ival.end] + [next.begin; next.end] = [ival.begin; next.end]
if let Some(next) = &self.liveins.get(n + 1) {
if order.is_block_gap(inst, next.begin) {
// At this point we can choose to remove the current interval or the next
// one; remove the next one to avoid one memory move.
let next_end = next.end;
debug_assert!(cmp!(order, next_end > self.liveins[n].end));
self.liveins[n].end = next_end;
self.liveins.remove(n + 1);
return false;
}
}
// We can't coalesce, just extend the interval.
self.liveins[n].end = inst;
false
}
Err(n) => {
// No interval was found containing the current block: we need to insert a new one,
// unless there's a coalescing opportunity with the previous or next one.
let coalesce_next = self
.liveins
.get(n)
.filter(|next| order.is_block_gap(inst, next.begin))
.is_some();
let coalesce_prev = self
.liveins
.get(n.wrapping_sub(1))
.filter(|prev| order.is_block_gap(prev.end, block))
.is_some();
match (coalesce_prev, coalesce_next) {
// The new interval is the missing hole between prev and next: we can merge
// them all together.
(true, true) => {
let prev_end = self.liveins[n - 1].end;
debug_assert!(cmp!(order, prev_end <= self.liveins[n].end));
self.liveins[n - 1].end = self.liveins[n].end;
self.liveins.remove(n);
}
// Coalesce only with the previous or next one.
(true, false) => {
debug_assert!(cmp!(order, inst >= self.liveins[n - 1].end));
self.liveins[n - 1].end = inst;
}
(false, true) => {
debug_assert!(cmp!(order, block <= self.liveins[n].begin));
self.liveins[n].begin = block;
}
(false, false) => {
// No coalescing opportunity, we have to insert.
self.liveins.insert(
n,
Interval {
begin: block,
end: inst,
},
);
}
}
true
}
}
}
/// Is this the live range of a dead value?
///
/// A dead value has no uses, and its live range ends at the same program point where it is
/// defined.
pub fn is_dead(&self) -> bool {
self.def_begin == self.def_end
}
/// Is this a local live range?
///
/// A local live range is only used in the same block where it was defined. It is allowed to span
/// multiple basic blocks within that block.
pub fn is_local(&self) -> bool {
self.liveins.is_empty()
}
/// Get the program point where this live range is defined.
///
/// This will be a block header when the value is a block argument, otherwise it is the defining
/// instruction.
pub fn def(&self) -> ProgramPoint {
self.def_begin
}
/// Move the definition of this value to a new program point.
///
/// It is only valid to move the definition within the same block, and it can't be moved beyond
/// `def_local_end()`.
pub fn move_def_locally(&mut self, def: ProgramPoint) {
self.def_begin = def;
}
/// Get the local end-point of this live range in the block where it is defined.
///
/// This can be the block header itself in the case of a dead block argument.
/// Otherwise, it will be the last local use or branch/jump that can reach a use.
pub fn def_local_end(&self) -> ProgramPoint {
self.def_end
}
/// Get the local end-point of this live range in a block where it is live-in.
///
/// If this live range is not live-in to `block`, return `None`. Otherwise, return the end-point
/// of this live range's local interval in `block`.
///
/// If the live range is live through all of `block`, the terminator of `block` is a correct
/// answer, but it is also possible that an even later program point is returned. So don't
/// depend on the returned `Inst` to belong to `block`.
pub fn livein_local_end(&self, block: Block, order: &PO) -> Option<Inst> {
self.lookup_entry_containing_block(block, order)
.and_then(|i| {
let inst = self.liveins[i].end;
if cmp!(order, block < inst) {
Ok(inst)
} else {
// Can be any error type, really, since it's discarded by ok().
Err(i)
}
})
.ok()
}
/// Is this value live-in to `block`?
///
/// A block argument is not considered to be live in.
pub fn is_livein(&self, block: Block, order: &PO) -> bool {
self.livein_local_end(block, order).is_some()
}
/// Get all the live-in intervals.
///
/// Note that the intervals are stored in a compressed form so each entry may span multiple
/// blocks where the value is live in.
pub fn liveins<'a>(&'a self) -> impl Iterator<Item = (Block, Inst)> + 'a {
self.liveins
.iter()
.map(|interval| (interval.begin, interval.end))
}
/// Check if this live range overlaps a definition in `block`.
pub fn overlaps_def(&self, def: ExpandedProgramPoint, block: Block, order: &PO) -> bool {
// Two defs at the same program point always overlap, even if one is dead.
if def == self.def_begin.into() {
return true;
}
// Check for an overlap with the local range.
if cmp!(order, def >= self.def_begin) && cmp!(order, def < self.def_end) {
return true;
}
// Check for an overlap with a live-in range.
match self.livein_local_end(block, order) {
Some(inst) => cmp!(order, def < inst),
None => false,
}
}
/// Check if this live range reaches a use at `user` in `block`.
pub fn reaches_use(&self, user: Inst, block: Block, order: &PO) -> bool {
// Check for an overlap with the local range.
if cmp!(order, user > self.def_begin) && cmp!(order, user <= self.def_end) {
return true;
}
// Check for an overlap with a live-in range.
match self.livein_local_end(block, order) {
Some(inst) => cmp!(order, user <= inst),
None => false,
}
}
/// Check if this live range is killed at `user` in `block`.
pub fn killed_at(&self, user: Inst, block: Block, order: &PO) -> bool {
self.def_local_end() == user.into() || self.livein_local_end(block, order) == Some(user)
}
}
/// Allow a `LiveRange` to be stored in a `SparseMap` indexed by values.
impl<PO: ProgramOrder> SparseMapValue<Value> for GenericLiveRange<PO> {
fn key(&self) -> Value {
self.value
}
}
#[cfg(test)]
mod tests {
use super::{GenericLiveRange, Interval};
use crate::entity::EntityRef;
use crate::ir::{Block, Inst, Value};
use crate::ir::{ExpandedProgramPoint, ProgramOrder};
use alloc::vec::Vec;
use core::cmp::Ordering;
// Dummy program order which simply compares indexes.
// It is assumed that blocks have indexes that are multiples of 10, and instructions have indexes
// in between. `is_block_gap` assumes that terminator instructions have indexes of the form
// block * 10 + 1. This is used in the coalesce test.
struct ProgOrder {}
impl ProgramOrder for ProgOrder {
fn cmp<A, B>(&self, a: A, b: B) -> Ordering
where
A: Into<ExpandedProgramPoint>,
B: Into<ExpandedProgramPoint>,
{
fn idx(pp: ExpandedProgramPoint) -> usize {
match pp {
ExpandedProgramPoint::Inst(i) => i.index(),
ExpandedProgramPoint::Block(e) => e.index(),
}
}
let ia = idx(a.into());
let ib = idx(b.into());
ia.cmp(&ib)
}
fn is_block_gap(&self, inst: Inst, block: Block) -> bool {
inst.index() % 10 == 1 && block.index() / 10 == inst.index() / 10 + 1
}
}
impl ProgOrder {
// Get the block corresponding to `inst`.
fn inst_block(&self, inst: Inst) -> Block {
let i = inst.index();
Block::new(i - i % 10)
}
// Get the block of a program point.
fn pp_block<PP: Into<ExpandedProgramPoint>>(&self, pp: PP) -> Block {
match pp.into() {
ExpandedProgramPoint::Inst(i) => self.inst_block(i),
ExpandedProgramPoint::Block(e) => e,
}
}
// Validate the live range invariants.
fn validate(&self, lr: &GenericLiveRange<Self>) {
// The def interval must cover a single block.
let def_block = self.pp_block(lr.def_begin);
assert_eq!(def_block, self.pp_block(lr.def_end));
// Check that the def interval isn't backwards.
match self.cmp(lr.def_begin, lr.def_end) {
Ordering::Equal => assert!(lr.liveins.is_empty()),
Ordering::Greater => {
panic!("Backwards def interval: {}-{}", lr.def_begin, lr.def_end)
}
Ordering::Less => {}
}
// Check the live-in intervals.
let mut prev_end = None;
for Interval { begin, end } in lr.liveins.iter() {
let begin = *begin;
let end = *end;
assert_eq!(self.cmp(begin, end), Ordering::Less);
if let Some(e) = prev_end {
assert_eq!(self.cmp(e, begin), Ordering::Less);
}
assert!(
self.cmp(lr.def_end, begin) == Ordering::Less
|| self.cmp(lr.def_begin, end) == Ordering::Greater,
"Interval can't overlap the def block"
);
// Save for next round.
prev_end = Some(end);
}
}
}
// Singleton `ProgramOrder` for tests below.
const PO: &'static ProgOrder = &ProgOrder {};
#[test]
fn dead_def_range() {
let v0 = Value::new(0);
let e0 = Block::new(0);
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let e2 = Block::new(2);
let lr = GenericLiveRange::new(v0, i1.into(), Default::default());
assert!(lr.is_dead());
assert!(lr.is_local());
assert_eq!(lr.def(), i1.into());
assert_eq!(lr.def_local_end(), i1.into());
assert_eq!(lr.livein_local_end(e2, PO), None);
PO.validate(&lr);
// A dead live range overlaps its own def program point.
assert!(lr.overlaps_def(i1.into(), e0, PO));
assert!(!lr.overlaps_def(i2.into(), e0, PO));
assert!(!lr.overlaps_def(e0.into(), e0, PO));
}
#[test]
fn dead_arg_range() {
let v0 = Value::new(0);
let e2 = Block::new(2);
let lr = GenericLiveRange::new(v0, e2.into(), Default::default());
assert!(lr.is_dead());
assert!(lr.is_local());
assert_eq!(lr.def(), e2.into());
assert_eq!(lr.def_local_end(), e2.into());
// The def interval of a block argument does not count as live-in.
assert_eq!(lr.livein_local_end(e2, PO), None);
PO.validate(&lr);
}
#[test]
fn local_def() {
let v0 = Value::new(0);
let e10 = Block::new(10);
let i11 = Inst::new(11);
let i12 = Inst::new(12);
let i13 = Inst::new(13);
let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());
assert_eq!(lr.extend_in_block(e10, i13, PO), false);
PO.validate(&lr);
assert!(!lr.is_dead());
assert!(lr.is_local());
assert_eq!(lr.def(), i11.into());
assert_eq!(lr.def_local_end(), i13.into());
// Extending to an already covered inst should not change anything.
assert_eq!(lr.extend_in_block(e10, i12, PO), false);
PO.validate(&lr);
assert_eq!(lr.def(), i11.into());
assert_eq!(lr.def_local_end(), i13.into());
}
#[test]
fn local_arg() {
let v0 = Value::new(0);
let e10 = Block::new(10);
let i11 = Inst::new(11);
let i12 = Inst::new(12);
let i13 = Inst::new(13);
let mut lr = GenericLiveRange::new(v0, e10.into(), Default::default());
// Extending a dead block argument in its own block should not indicate that a live-in
// interval was created.
assert_eq!(lr.extend_in_block(e10, i12, PO), false);
PO.validate(&lr);
assert!(!lr.is_dead());
assert!(lr.is_local());
assert_eq!(lr.def(), e10.into());
assert_eq!(lr.def_local_end(), i12.into());
// Extending to an already covered inst should not change anything.
assert_eq!(lr.extend_in_block(e10, i11, PO), false);
PO.validate(&lr);
assert_eq!(lr.def(), e10.into());
assert_eq!(lr.def_local_end(), i12.into());
// Extending further.
assert_eq!(lr.extend_in_block(e10, i13, PO), false);
PO.validate(&lr);
assert_eq!(lr.def(), e10.into());
assert_eq!(lr.def_local_end(), i13.into());
}
#[test]
fn global_def() {
let v0 = Value::new(0);
let e10 = Block::new(10);
let i11 = Inst::new(11);
let i12 = Inst::new(12);
let e20 = Block::new(20);
let i21 = Inst::new(21);
let i22 = Inst::new(22);
let i23 = Inst::new(23);
let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());
assert_eq!(lr.extend_in_block(e10, i12, PO), false);
// Adding a live-in interval.
assert_eq!(lr.extend_in_block(e20, i22, PO), true);
PO.validate(&lr);
assert_eq!(lr.livein_local_end(e20, PO), Some(i22));
// Non-extending the live-in.
assert_eq!(lr.extend_in_block(e20, i21, PO), false);
assert_eq!(lr.livein_local_end(e20, PO), Some(i22));
// Extending the existing live-in.
assert_eq!(lr.extend_in_block(e20, i23, PO), false);
PO.validate(&lr);
assert_eq!(lr.livein_local_end(e20, PO), Some(i23));
}
#[test]
fn coalesce() {
let v0 = Value::new(0);
let i11 = Inst::new(11);
let e20 = Block::new(20);
let i21 = Inst::new(21);
let e30 = Block::new(30);
let i31 = Inst::new(31);
let e40 = Block::new(40);
let i41 = Inst::new(41);
let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());
assert_eq!(lr.extend_in_block(e30, i31, PO,), true);
assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e30, i31)]);
// Coalesce to previous
assert_eq!(lr.extend_in_block(e40, i41, PO,), true);
assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e30, i41)]);
// Coalesce to next
assert_eq!(lr.extend_in_block(e20, i21, PO,), true);
assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e20, i41)]);
let mut lr = GenericLiveRange::new(v0, i11.into(), Default::default());
assert_eq!(lr.extend_in_block(e40, i41, PO,), true);
assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e40, i41)]);
assert_eq!(lr.extend_in_block(e20, i21, PO,), true);
assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e20, i21), (e40, i41)]);
// Coalesce to previous and next
assert_eq!(lr.extend_in_block(e30, i31, PO,), true);
assert_eq!(lr.liveins().collect::<Vec<_>>(), [(e20, i41)]);
}
}