1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//! Verify conventional SSA form.

use crate::dbg::DisplayList;
use crate::dominator_tree::{DominatorTree, DominatorTreePreorder};
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
use crate::ir::{ExpandedProgramPoint, Function};
use crate::regalloc::liveness::Liveness;
use crate::regalloc::virtregs::VirtRegs;
use crate::timing;
use crate::verifier::{VerifierErrors, VerifierStepResult};

/// Verify conventional SSA form for `func`.
///
/// Conventional SSA form is represented in Cranelift with the help of virtual registers:
///
/// - Two values are said to be *PHI-related* if one is a block argument and the other is passed as
///   a branch argument in a location that matches the first value.
/// - PHI-related values must belong to the same virtual register.
/// - Two values in the same virtual register must not have overlapping live ranges.
///
/// Additionally, we verify this property of virtual registers:
///
/// - The values in a virtual register are topologically ordered w.r.t. dominance.
///
/// We don't verify that virtual registers are minimal. Minimal CSSA is not required.
pub fn verify_cssa(
    func: &Function,
    cfg: &ControlFlowGraph,
    domtree: &DominatorTree,
    liveness: &Liveness,
    virtregs: &VirtRegs,
    errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
    let _tt = timing::verify_cssa();

    let mut preorder = DominatorTreePreorder::new();
    preorder.compute(domtree, &func.layout);

    let verifier = CssaVerifier {
        func,
        cfg,
        domtree,
        virtregs,
        liveness,
        preorder,
    };
    verifier.check_virtregs(errors)?;
    verifier.check_cssa(errors)?;
    Ok(())
}

struct CssaVerifier<'a> {
    func: &'a Function,
    cfg: &'a ControlFlowGraph,
    domtree: &'a DominatorTree,
    virtregs: &'a VirtRegs,
    liveness: &'a Liveness,
    preorder: DominatorTreePreorder,
}

impl<'a> CssaVerifier<'a> {
    fn check_virtregs(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        for vreg in self.virtregs.all_virtregs() {
            let values = self.virtregs.values(vreg);

            for (idx, &val) in values.iter().enumerate() {
                if !self.func.dfg.value_is_valid(val) {
                    return errors.fatal((val, format!("Invalid value in {}", vreg)));
                }
                if !self.func.dfg.value_is_attached(val) {
                    return errors.fatal((val, format!("Detached value in {}", vreg)));
                }
                if self.liveness.get(val).is_none() {
                    return errors.fatal((val, format!("Value in {} has no live range", vreg)));
                };

                // Check topological ordering with the previous values in the virtual register.
                let def: ExpandedProgramPoint = self.func.dfg.value_def(val).into();
                let def_block = self.func.layout.pp_block(def);
                for &prev_val in &values[0..idx] {
                    let prev_def: ExpandedProgramPoint = self.func.dfg.value_def(prev_val).into();
                    let prev_block = self.func.layout.pp_block(prev_def);

                    if prev_def == def {
                        return errors.fatal((
                            val,
                            format!(
                                "Values {} and {} in {} = {} defined at the same program point",
                                prev_val,
                                val,
                                vreg,
                                DisplayList(values)
                            ),
                        ));
                    }

                    // Enforce topological ordering of defs in the virtual register.
                    if self.preorder.dominates(def_block, prev_block)
                        && self.domtree.dominates(def, prev_def, &self.func.layout)
                    {
                        return errors.fatal((
                            val,
                            format!(
                                "Value in {} = {} def dominates previous {}",
                                vreg,
                                DisplayList(values),
                                prev_val
                            ),
                        ));
                    }
                }

                // Knowing that values are in topo order, we can check for interference this
                // way.
                // We only have to check against the nearest dominating value.
                for &prev_val in values[0..idx].iter().rev() {
                    let prev_def: ExpandedProgramPoint = self.func.dfg.value_def(prev_val).into();
                    let prev_block = self.func.layout.pp_block(prev_def);

                    if self.preorder.dominates(prev_block, def_block)
                        && self.domtree.dominates(prev_def, def, &self.func.layout)
                    {
                        if self.liveness[prev_val].overlaps_def(def, def_block, &self.func.layout) {
                            return errors.fatal((
                                val,
                                format!(
                                    "Value def in {} = {} interferes with {}",
                                    vreg,
                                    DisplayList(values),
                                    prev_val
                                ),
                            ));
                        } else {
                            break;
                        }
                    }
                }
            }
        }

        Ok(())
    }

    fn check_cssa(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        for block in self.func.layout.blocks() {
            let block_params = self.func.dfg.block_params(block);
            for BlockPredecessor { inst: pred, .. } in self.cfg.pred_iter(block) {
                let pred_args = self.func.dfg.inst_variable_args(pred);
                // This should have been caught by an earlier verifier pass.
                assert_eq!(
                    block_params.len(),
                    pred_args.len(),
                    "Wrong arguments on branch."
                );

                for (&block_param, &pred_arg) in block_params.iter().zip(pred_args) {
                    if !self.virtregs.same_class(block_param, pred_arg) {
                        return errors.fatal((
                            pred,
                            format!(
                                "{} and {} must be in the same virtual register",
                                block_param, pred_arg
                            ),
                        ));
                    }
                }
            }
        }

        Ok(())
    }
}