1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
//! A thread pool for isolating blocking I/O in async programs.
//!
//! Sometimes there's no way to avoid blocking I/O. Consider files or stdin, which have weak async
//! support on modern operating systems. While [IOCP], [AIO], and [io_uring] are possible
//! solutions, they're not always available or ideal.
//!
//! Since blocking is not allowed inside futures, we must move blocking I/O onto a special thread
//! pool provided by this crate. The pool dynamically spawns and stops threads depending on the
//! current number of running I/O jobs.
//!
//! Note that there is a limit on the number of active threads. Once that limit is hit, a running
//! job has to finish before others get a chance to run. When a thread is idle, it waits for the
//! next job or shuts down after a certain timeout.
//!
//! [IOCP]: https://en.wikipedia.org/wiki/Input/output_completion_port
//! [AIO]: http://man7.org/linux/man-pages/man2/io_submit.2.html
//! [io_uring]: https://lwn.net/Articles/776703
//!
//! # Examples
//!
//! Read the contents of a file:
//!
//! ```no_run
//! use blocking::unblock;
//! use std::fs;
//!
//! # futures_lite::future::block_on(async {
//! let contents = unblock(|| fs::read_to_string("file.txt")).await?;
//! println!("{}", contents);
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Read a file and pipe its contents to stdout:
//!
//! ```no_run
//! use blocking::{unblock, Unblock};
//! use futures_lite::io;
//! use std::fs::File;
//!
//! # futures_lite::future::block_on(async {
//! let input = unblock(|| File::open("file.txt")).await?;
//! let input = Unblock::new(input);
//! let mut output = Unblock::new(std::io::stdout());
//!
//! io::copy(input, &mut output).await?;
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Iterate over the contents of a directory:
//!
//! ```no_run
//! use blocking::Unblock;
//! use futures_lite::prelude::*;
//! use std::fs;
//!
//! # futures_lite::future::block_on(async {
//! let mut dir = Unblock::new(fs::read_dir(".")?);
//! while let Some(item) = dir.next().await {
//!     println!("{}", item?.file_name().to_string_lossy());
//! }
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Spawn a process:
//!
//! ```no_run
//! use blocking::unblock;
//! use std::process::Command;
//!
//! # futures_lite::future::block_on(async {
//! let out = unblock(|| Command::new("dir").output()).await?;
//! # std::io::Result::Ok(()) });
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]

use std::any::Any;
use std::collections::VecDeque;
use std::fmt;
use std::io::{self, Read, Seek, SeekFrom, Write};
use std::mem;
use std::panic;
use std::pin::Pin;
use std::slice;
use std::sync::atomic::{self, AtomicBool, AtomicUsize, Ordering};
use std::sync::{Arc, Condvar, Mutex, MutexGuard};
use std::task::{Context, Poll};
use std::thread;
use std::time::Duration;

use async_channel::{bounded, Receiver};
use async_task::{Runnable, Task};
use atomic_waker::AtomicWaker;
use futures_lite::{future, prelude::*, ready};
use once_cell::sync::Lazy;

/// Lazily initialized global executor.
static EXECUTOR: Lazy<Executor> = Lazy::new(|| Executor {
    inner: Mutex::new(Inner {
        idle_count: 0,
        thread_count: 0,
        queue: VecDeque::new(),
    }),
    cvar: Condvar::new(),
});

/// The blocking executor.
struct Executor {
    /// Inner state of the executor.
    inner: Mutex<Inner>,

    /// Used to put idle threads to sleep and wake them up when new work comes in.
    cvar: Condvar,
}

/// Inner state of the blocking executor.
struct Inner {
    /// Number of idle threads in the pool.
    ///
    /// Idle threads are sleeping, waiting to get a task to run.
    idle_count: usize,

    /// Total number of threads in the pool.
    ///
    /// This is the number of idle threads + the number of active threads.
    thread_count: usize,

    /// The queue of blocking tasks.
    queue: VecDeque<Runnable>,
}

impl Executor {
    /// Spawns a future onto this executor.
    ///
    /// Returns a [`Task`] handle for the spawned task.
    fn spawn<T: Send + 'static>(future: impl Future<Output = T> + Send + 'static) -> Task<T> {
        let (runnable, task) = async_task::spawn(future, |r| EXECUTOR.schedule(r));
        runnable.schedule();
        task
    }

    /// Runs the main loop on the current thread.
    ///
    /// This function runs blocking tasks until it becomes idle and times out.
    fn main_loop(&'static self) {
        let mut inner = self.inner.lock().unwrap();
        loop {
            // This thread is not idle anymore because it's going to run tasks.
            inner.idle_count -= 1;

            // Run tasks in the queue.
            while let Some(runnable) = inner.queue.pop_front() {
                // We have found a task - grow the pool if needed.
                self.grow_pool(inner);

                // Run the task.
                panic::catch_unwind(|| runnable.run()).ok();

                // Re-lock the inner state and continue.
                inner = self.inner.lock().unwrap();
            }

            // This thread is now becoming idle.
            inner.idle_count += 1;

            // Put the thread to sleep until another task is scheduled.
            let timeout = Duration::from_millis(500);
            let (lock, res) = self.cvar.wait_timeout(inner, timeout).unwrap();
            inner = lock;

            // If there are no tasks after a while, stop this thread.
            if res.timed_out() && inner.queue.is_empty() {
                inner.idle_count -= 1;
                inner.thread_count -= 1;
                break;
            }
        }
    }

    /// Schedules a runnable task for execution.
    fn schedule(&'static self, runnable: Runnable) {
        let mut inner = self.inner.lock().unwrap();
        inner.queue.push_back(runnable);

        // Notify a sleeping thread and spawn more threads if needed.
        self.cvar.notify_one();
        self.grow_pool(inner);
    }

    /// Spawns more blocking threads if the pool is overloaded with work.
    fn grow_pool(&'static self, mut inner: MutexGuard<'static, Inner>) {
        // If runnable tasks greatly outnumber idle threads and there aren't too many threads
        // already, then be aggressive: wake all idle threads and spawn one more thread.
        while inner.queue.len() > inner.idle_count * 5 && inner.thread_count < 500 {
            // The new thread starts in idle state.
            inner.idle_count += 1;
            inner.thread_count += 1;

            // Notify all existing idle threads because we need to hurry up.
            self.cvar.notify_all();

            // Generate a new thread ID.
            static ID: AtomicUsize = AtomicUsize::new(1);
            let id = ID.fetch_add(1, Ordering::Relaxed);

            // Spawn the new thread.
            thread::Builder::new()
                .name(format!("blocking-{}", id))
                .spawn(move || self.main_loop())
                .unwrap();
        }
    }
}

/// Runs blocking code on a thread pool.
///
/// # Examples
///
/// Read the contents of a file:
///
/// ```no_run
/// use blocking::unblock;
/// use std::fs;
///
/// # futures_lite::future::block_on(async {
/// let contents = unblock(|| fs::read_to_string("file.txt")).await?;
/// # std::io::Result::Ok(()) });
/// ```
///
/// Spawn a process:
///
/// ```no_run
/// use blocking::unblock;
/// use std::process::Command;
///
/// # futures_lite::future::block_on(async {
/// let out = unblock(|| Command::new("dir").output()).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn unblock<T, F>(f: F) -> T
where
    F: FnOnce() -> T + Send + 'static,
    T: Send + 'static,
{
    Executor::spawn(async move { f() }).await
}

/// Runs blocking I/O on a thread pool.
///
/// Blocking I/O must be isolated from async code. This type moves blocking I/O operations onto a
/// special thread pool while exposing a familiar async interface.
///
/// This type implements traits [`Stream`], [`AsyncRead`], [`AsyncWrite`], or [`AsyncSeek`] if the
/// inner type implements [`Iterator`], [`Read`], [`Write`], or [`Seek`], respectively.
///
/// # Caveats
///
/// [`Unblock`] is a low-level primitive, and as such it comes with some caveats.
///
/// For higher-level primitives built on top of [`Unblock`], look into [`async-fs`] or
/// [`async-process`] (on Windows).
///
/// [`async-fs`]: https://github.com/stjepang/async-fs
/// [`async-process`]: https://github.com/stjepang/async-process
///
/// [`Unblock`] communicates with I/O operations on the thread pool through a pipe. That means an
/// async read/write operation simply receives/sends some bytes from/into the pipe. When in reading
/// mode, the thread pool reads bytes from the I/O handle and forwards them into the pipe until it
/// becomes full. When in writing mode, the thread pool reads bytes from the pipe and forwards them
/// into the I/O handle.
///
/// Use [`Unblock::with_capacity()`] to configure the capacity of the pipe.
///
/// ### Reading
///
/// If you create an [`Unblock`]`<`[`Stdin`][`std::io::Stdin`]`>`, read some bytes from it,
/// and then drop it, a blocked read operation may keep hanging on the thread pool. The next
/// attempt to read from stdin will lose bytes read by the hanging operation. This is a difficult
/// problem to solve, so make sure you only use a single stdin handle for the duration of the
/// entire program.
///
/// ### Writing
///
/// If writing data through the [`AsyncWrite`] trait, make sure to flush before dropping the
/// [`Unblock`] handle or some buffered data might get lost.
///
/// ### Seeking
///
/// Because of buffering in the pipe, if [`Unblock`] wraps a [`File`][`std::fs::File`], a single
/// read operation may move the file cursor farther than is the span of the operation. In fact,
/// reading just keeps going in the background until the pipe gets full. Keep this mind when
/// using [`AsyncSeek`] with [relative][`SeekFrom::Current`] offsets.
///
/// # Examples
///
/// ```
/// use blocking::Unblock;
/// use futures_lite::prelude::*;
///
/// # futures_lite::future::block_on(async {
/// let mut stdout = Unblock::new(std::io::stdout());
/// stdout.write_all(b"Hello world!").await?;
/// stdout.flush().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub struct Unblock<T> {
    state: State<T>,
    cap: Option<usize>,
}

impl<T> Unblock<T> {
    /// Wraps a blocking I/O handle into the async [`Unblock`] interface.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::Unblock;
    ///
    /// let stdin = Unblock::new(std::io::stdin());
    /// ```
    pub fn new(io: T) -> Unblock<T> {
        Unblock {
            state: State::Idle(Some(Box::new(io))),
            cap: None,
        }
    }

    /// Wraps a blocking I/O handle into the async [`Unblock`] interface with a custom buffer
    /// capacity.
    ///
    /// When communicating with the inner [`Stream`]/[`Read`]/[`Write`] type from async code, data
    /// transferred between blocking and async code goes through a buffer of limited capacity. This
    /// constructor configures that capacity.
    ///
    /// The default capacity is:
    ///
    /// * For [`Iterator`] types: 8192 items.
    /// * For [`Read`]/[`Write`] types: 8 MB.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::Unblock;
    ///
    /// let stdout = Unblock::with_capacity(64 * 1024, std::io::stdout());
    /// ```
    pub fn with_capacity(cap: usize, io: T) -> Unblock<T> {
        Unblock {
            state: State::Idle(Some(Box::new(io))),
            cap: Some(cap),
        }
    }

    /// Gets a mutable reference to the blocking I/O handle.
    ///
    /// This is an async method because the I/O handle might be on the thread pool and needs to
    /// be moved onto the current thread before we can get a reference to it.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::{unblock, Unblock};
    /// use std::fs::File;
    ///
    /// # futures_lite::future::block_on(async {
    /// let file = unblock(|| File::create("file.txt")).await?;
    /// let mut file = Unblock::new(file);
    ///
    /// let metadata = file.get_mut().await.metadata()?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn get_mut(&mut self) -> &mut T {
        // Wait for the running task to stop and ignore I/O errors if there are any.
        future::poll_fn(|cx| self.poll_stop(cx)).await.ok();

        // Assume idle state and get a reference to the inner value.
        match &mut self.state {
            State::Idle(t) => t.as_mut().expect("inner value was taken out"),
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => {
                unreachable!("when stopped, the state machine must be in idle state");
            }
        }
    }

    /// Performs a blocking operation on the I/O handle.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::{unblock, Unblock};
    /// use std::fs::File;
    ///
    /// # futures_lite::future::block_on(async {
    /// let file = unblock(|| File::create("file.txt")).await?;
    /// let mut file = Unblock::new(file);
    ///
    /// let metadata = file.with_mut(|f| f.metadata()).await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn with_mut<R, F>(&mut self, op: F) -> R
    where
        F: FnOnce(&mut T) -> R + Send + 'static,
        R: Send + 'static,
        T: Send + 'static,
    {
        // Wait for the running task to stop and ignore I/O errors if there are any.
        future::poll_fn(|cx| self.poll_stop(cx)).await.ok();

        // Assume idle state and take out the inner value.
        let mut t = match &mut self.state {
            State::Idle(t) => t.take().expect("inner value was taken out"),
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => {
                unreachable!("when stopped, the state machine must be in idle state");
            }
        };

        let (sender, receiver) = bounded(1);
        let task = Executor::spawn(async move {
            sender.try_send(op(&mut t)).ok();
            t
        });
        self.state = State::WithMut(task);

        receiver
            .recv()
            .await
            .expect("`Unblock::with_mut()` operation has panicked")
    }

    /// Extracts the inner blocking I/O handle.
    ///
    /// This is an async method because the I/O handle might be on the thread pool and needs to
    /// be moved onto the current thread before we can extract it.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use blocking::{unblock, Unblock};
    /// use futures_lite::prelude::*;
    /// use std::fs::File;
    ///
    /// # futures_lite::future::block_on(async {
    /// let file = unblock(|| File::create("file.txt")).await?;
    /// let file = Unblock::new(file);
    ///
    /// let file = file.into_inner().await;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn into_inner(self) -> T {
        // There's a bug in rustdoc causing it to render `mut self` as `__arg0: Self`, so we just
        // bind `self` to a local mutable variable.
        let mut this = self;

        // Wait for the running task to stop and ignore I/O errors if there are any.
        future::poll_fn(|cx| this.poll_stop(cx)).await.ok();

        // Assume idle state and extract the inner value.
        match &mut this.state {
            State::Idle(t) => *t.take().expect("inner value was taken out"),
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => {
                unreachable!("when stopped, the state machine must be in idle state");
            }
        }
    }

    /// Waits for the running task to stop.
    ///
    /// On success, the state machine is moved into the idle state.
    fn poll_stop(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        loop {
            match &mut self.state {
                State::Idle(_) => return Poll::Ready(Ok(())),

                State::WithMut(task) => {
                    // Poll the task to wait for it to finish.
                    let io = ready!(Pin::new(task).poll(cx));
                    self.state = State::Idle(Some(io));
                }

                State::Streaming(any, task) => {
                    // Drop the receiver to close the channel. This stops the `send()` operation in
                    // the task, after which the task returns the iterator back.
                    any.take();

                    // Poll the task to retrieve the iterator.
                    let iter = ready!(Pin::new(task).poll(cx));
                    self.state = State::Idle(Some(iter));
                }

                State::Reading(reader, task) => {
                    // Drop the reader to close the pipe. This stops copying inside the task, after
                    // which the task returns the I/O handle back.
                    reader.take();

                    // Poll the task to retrieve the I/O handle.
                    let (res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    res?;
                }

                State::Writing(writer, task) => {
                    // Drop the writer to close the pipe. This stops copying inside the task, after
                    // which the task flushes the I/O handle and
                    writer.take();

                    // Poll the task to retrieve the I/O handle.
                    let (res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    res?;
                }

                State::Seeking(task) => {
                    // Poll the task to wait for it to finish.
                    let (_, res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    res?;
                }
            }
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Unblock<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Closed;
        impl fmt::Debug for Closed {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<closed>")
            }
        }

        struct Blocked;
        impl fmt::Debug for Blocked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<blocked>")
            }
        }

        match &self.state {
            State::Idle(None) => f.debug_struct("Unblock").field("io", &Closed).finish(),
            State::Idle(Some(io)) => {
                let io: &T = &*io;
                f.debug_struct("Unblock").field("io", io).finish()
            }
            State::WithMut(..)
            | State::Streaming(..)
            | State::Reading(..)
            | State::Writing(..)
            | State::Seeking(..) => f.debug_struct("Unblock").field("io", &Blocked).finish(),
        }
    }
}

/// Current state of a blocking task.
enum State<T> {
    /// There is no blocking task.
    ///
    /// The inner value is readily available, unless it has already been extracted. The value is
    /// extracted out by [`Unblock::into_inner()`], [`AsyncWrite::poll_close()`], or by awaiting
    /// [`Unblock`].
    Idle(Option<Box<T>>),

    /// A [`Unblock::with_mut()`] closure was spawned and is still running.
    WithMut(Task<Box<T>>),

    /// The inner value is an [`Iterator`] currently iterating in a task.
    ///
    /// The `dyn Any` value here is a `mpsc::Receiver<<T as Iterator>::Item>`.
    Streaming(Option<Box<dyn Any + Send + Sync>>, Task<Box<T>>),

    /// The inner value is a [`Read`] currently reading in a task.
    Reading(Option<Reader>, Task<(io::Result<()>, Box<T>)>),

    /// The inner value is a [`Write`] currently writing in a task.
    Writing(Option<Writer>, Task<(io::Result<()>, Box<T>)>),

    /// The inner value is a [`Seek`] currently seeking in a task.
    Seeking(Task<(SeekFrom, io::Result<u64>, Box<T>)>),
}

impl<T: Iterator + Send + 'static> Stream for Unblock<T>
where
    T::Item: Send + 'static,
{
    type Item = T::Item;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<T::Item>> {
        loop {
            match &mut self.state {
                // If not in idle or active streaming state, stop the running task.
                State::WithMut(..)
                | State::Streaming(None, _)
                | State::Reading(..)
                | State::Writing(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx)).ok();
                }

                // If idle, start a streaming task.
                State::Idle(iter) => {
                    // Take the iterator out to run it on a blocking task.
                    let mut iter = iter.take().expect("inner iterator was taken out");

                    // This channel capacity seems to work well in practice. If it's too low, there
                    // will be too much synchronization between tasks. If too high, memory
                    // consumption increases.
                    let (sender, receiver) = bounded(self.cap.unwrap_or(8 * 1024)); // 8192 items

                    // Spawn a blocking task that runs the iterator and returns it when done.
                    let task = Executor::spawn(async move {
                        for item in &mut iter {
                            if sender.send(item).await.is_err() {
                                break;
                            }
                        }
                        iter
                    });

                    // Move into the busy state and poll again.
                    self.state = State::Streaming(Some(Box::new(receiver)), task);
                }

                // If streaming, receive an item.
                State::Streaming(Some(any), task) => {
                    let receiver = any.downcast_mut::<Receiver<T::Item>>().unwrap();

                    // Poll the channel.
                    let opt = ready!(Pin::new(receiver).poll_next(cx));

                    // If the channel is closed, retrieve the iterator back from the blocking task.
                    // This is not really a required step, but it's cleaner to drop the iterator on
                    // the same thread that created it.
                    if opt.is_none() {
                        // Poll the task to retrieve the iterator.
                        let iter = ready!(Pin::new(task).poll(cx));
                        self.state = State::Idle(Some(iter));
                    }

                    return Poll::Ready(opt);
                }
            }
        }
    }
}

impl<T: Read + Send + 'static> AsyncRead for Unblock<T> {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        loop {
            match &mut self.state {
                // If not in idle or active reading state, stop the running task.
                State::WithMut(..)
                | State::Reading(None, _)
                | State::Streaming(..)
                | State::Writing(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                // If idle, start a reading task.
                State::Idle(io) => {
                    // Take the I/O handle out to read it on a blocking task.
                    let mut io = io.take().expect("inner value was taken out");

                    // This pipe capacity seems to work well in practice. If it's too low, there
                    // will be too much synchronization between tasks. If too high, memory
                    // consumption increases.
                    let (reader, mut writer) = pipe(self.cap.unwrap_or(8 * 1024 * 1024)); // 8 MB

                    // Spawn a blocking task that reads and returns the I/O handle when done.
                    let task = Executor::spawn(async move {
                        // Copy bytes from the I/O handle into the pipe until the pipe is closed or
                        // an error occurs.
                        loop {
                            match future::poll_fn(|cx| writer.fill(cx, &mut io)).await {
                                Ok(0) => return (Ok(()), io),
                                Ok(_) => {}
                                Err(err) => return (Err(err), io),
                            }
                        }
                    });

                    // Move into the busy state and poll again.
                    self.state = State::Reading(Some(reader), task);
                }

                // If reading, read bytes from the pipe.
                State::Reading(Some(reader), task) => {
                    // Poll the pipe.
                    let n = ready!(reader.drain(cx, buf))?;

                    // If the pipe is closed, retrieve the I/O handle back from the blocking task.
                    // This is not really a required step, but it's cleaner to drop the handle on
                    // the same thread that created it.
                    if n == 0 {
                        // Poll the task to retrieve the I/O handle.
                        let (res, io) = ready!(Pin::new(task).poll(cx));
                        // Make sure to move into the idle state before reporting errors.
                        self.state = State::Idle(Some(io));
                        res?;
                    }

                    return Poll::Ready(Ok(n));
                }
            }
        }
    }
}

impl<T: Write + Send + 'static> AsyncWrite for Unblock<T> {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        loop {
            match &mut self.state {
                // If not in idle or active writing state, stop the running task.
                State::WithMut(..)
                | State::Writing(None, _)
                | State::Streaming(..)
                | State::Reading(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                // If idle, start the writing task.
                State::Idle(io) => {
                    // Take the I/O handle out to write on a blocking task.
                    let mut io = io.take().expect("inner value was taken out");

                    // This pipe capacity seems to work well in practice. If it's too low, there will
                    // be too much synchronization between tasks. If too high, memory consumption
                    // increases.
                    let (mut reader, writer) = pipe(self.cap.unwrap_or(8 * 1024 * 1024)); // 8 MB

                    // Spawn a blocking task that writes and returns the I/O handle when done.
                    let task = Executor::spawn(async move {
                        // Copy bytes from the pipe into the I/O handle until the pipe is closed or an
                        // error occurs. Flush the I/O handle at the end.
                        loop {
                            match future::poll_fn(|cx| reader.drain(cx, &mut io)).await {
                                Ok(0) => return (io.flush(), io),
                                Ok(_) => {}
                                Err(err) => {
                                    io.flush().ok();
                                    return (Err(err), io);
                                }
                            }
                        }
                    });

                    // Move into the busy state and poll again.
                    self.state = State::Writing(Some(writer), task);
                }

                // If writing, write more bytes into the pipe.
                State::Writing(Some(writer), _) => return writer.fill(cx, buf),
            }
        }
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        loop {
            match &mut self.state {
                // If not in idle state, stop the running task.
                State::WithMut(..)
                | State::Streaming(..)
                | State::Writing(..)
                | State::Reading(..)
                | State::Seeking(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                // Idle implies flushed.
                State::Idle(_) => return Poll::Ready(Ok(())),
            }
        }
    }

    fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        // First, make sure the I/O handle is flushed.
        ready!(Pin::new(&mut self).poll_flush(cx))?;

        // Then move into the idle state with no I/O handle, thus dropping it.
        self.state = State::Idle(None);
        Poll::Ready(Ok(()))
    }
}

impl<T: Seek + Send + 'static> AsyncSeek for Unblock<T> {
    fn poll_seek(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        pos: SeekFrom,
    ) -> Poll<io::Result<u64>> {
        loop {
            match &mut self.state {
                // If not in idle state, stop the running task.
                State::WithMut(..)
                | State::Streaming(..)
                | State::Reading(..)
                | State::Writing(..) => {
                    // Wait for the running task to stop.
                    ready!(self.poll_stop(cx))?;
                }

                State::Idle(io) => {
                    // Take the I/O handle out to seek on a blocking task.
                    let mut io = io.take().expect("inner value was taken out");

                    let task = Executor::spawn(async move {
                        let res = io.seek(pos);
                        (pos, res, io)
                    });
                    self.state = State::Seeking(task);
                }

                State::Seeking(task) => {
                    // Poll the task to wait for it to finish.
                    let (original_pos, res, io) = ready!(Pin::new(task).poll(cx));
                    // Make sure to move into the idle state before reporting errors.
                    self.state = State::Idle(Some(io));
                    let current = res?;

                    // If the `pos` argument matches the original one, return the result.
                    if original_pos == pos {
                        return Poll::Ready(Ok(current));
                    }
                }
            }
        }
    }
}

/// Creates a bounded single-producer single-consumer pipe.
///
/// A pipe is a ring buffer of `cap` bytes that can be asynchronously read from and written to.
///
/// When the sender is dropped, remaining bytes in the pipe can still be read. After that, attempts
/// to read will result in `Ok(0)`, i.e. they will always 'successfully' read 0 bytes.
///
/// When the receiver is dropped, the pipe is closed and no more bytes and be written into it.
/// Further writes will result in `Ok(0)`, i.e. they will always 'successfully' write 0 bytes.
fn pipe(cap: usize) -> (Reader, Writer) {
    assert!(cap > 0, "capacity must be positive");
    assert!(cap.checked_mul(2).is_some(), "capacity is too large");

    // Allocate the ring buffer.
    let mut v = Vec::with_capacity(cap);
    let buffer = v.as_mut_ptr();
    mem::forget(v);

    let inner = Arc::new(Pipe {
        head: AtomicUsize::new(0),
        tail: AtomicUsize::new(0),
        reader: AtomicWaker::new(),
        writer: AtomicWaker::new(),
        closed: AtomicBool::new(false),
        buffer,
        cap,
    });

    let r = Reader {
        inner: inner.clone(),
        head: 0,
        tail: 0,
    };

    let w = Writer {
        inner,
        head: 0,
        tail: 0,
        zeroed_until: 0,
    };

    (r, w)
}

/// The reading side of a pipe.
struct Reader {
    /// The inner ring buffer.
    inner: Arc<Pipe>,

    /// The head index, moved by the reader, in the range `0..2*cap`.
    ///
    /// This index always matches `inner.head`.
    head: usize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    ///
    /// This index is a snapshot of `index.tail` that might become stale at any point.
    tail: usize,
}

/// The writing side of a pipe.
struct Writer {
    /// The inner ring buffer.
    inner: Arc<Pipe>,

    /// The head index, moved by the reader, in the range `0..2*cap`.
    ///
    /// This index is a snapshot of `index.head` that might become stale at any point.
    head: usize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    ///
    /// This index always matches `inner.tail`.
    tail: usize,

    /// How many bytes at the beginning of the buffer have been zeroed.
    ///
    /// The pipe allocates an uninitialized buffer, and we must be careful about passing
    /// uninitialized data to user code. Zeroing the buffer right after allocation would be too
    /// expensive, so we zero it in smaller chunks as the writer makes progress.
    zeroed_until: usize,
}

unsafe impl Send for Reader {}
unsafe impl Send for Writer {}

/// The inner ring buffer.
///
/// Head and tail indices are in the range `0..2*cap`, even though they really map onto the
/// `0..cap` range. The distance between head and tail indices is never more than `cap`.
///
/// The reason why indices are not in the range `0..cap` is because we need to distinguish between
/// the pipe being empty and being full. If head and tail were in `0..cap`, then `head == tail`
/// could mean the pipe is either empty or full, but we don't know which!
struct Pipe {
    /// The head index, moved by the reader, in the range `0..2*cap`.
    head: AtomicUsize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    tail: AtomicUsize,

    /// A waker representing the blocked reader.
    reader: AtomicWaker,

    /// A waker representing the blocked writer.
    writer: AtomicWaker,

    /// Set to `true` if the reader or writer was dropped.
    closed: AtomicBool,

    /// The byte buffer.
    buffer: *mut u8,

    /// The buffer capacity.
    cap: usize,
}

unsafe impl Sync for Pipe {}
unsafe impl Send for Pipe {}

impl Drop for Pipe {
    fn drop(&mut self) {
        // Deallocate the byte buffer.
        unsafe {
            Vec::from_raw_parts(self.buffer, 0, self.cap);
        }
    }
}

impl Drop for Reader {
    fn drop(&mut self) {
        // Dropping closes the pipe and then wakes the writer.
        self.inner.closed.store(true, Ordering::SeqCst);
        self.inner.writer.wake();
    }
}

impl Drop for Writer {
    fn drop(&mut self) {
        // Dropping closes the pipe and then wakes the reader.
        self.inner.closed.store(true, Ordering::SeqCst);
        self.inner.reader.wake();
    }
}

impl Reader {
    /// Reads bytes from this reader and writes into blocking `dest`.
    fn drain(&mut self, cx: &mut Context<'_>, mut dest: impl Write) -> Poll<io::Result<usize>> {
        let cap = self.inner.cap;

        // Calculates the distance between two indices.
        let distance = |a: usize, b: usize| {
            if a <= b {
                b - a
            } else {
                2 * cap - (a - b)
            }
        };

        // If the pipe appears to be empty...
        if distance(self.head, self.tail) == 0 {
            // Reload the tail in case it's become stale.
            self.tail = self.inner.tail.load(Ordering::Acquire);

            // If the pipe is now really empty...
            if distance(self.head, self.tail) == 0 {
                // Register the waker.
                self.inner.reader.register(cx.waker());
                atomic::fence(Ordering::SeqCst);

                // Reload the tail after registering the waker.
                self.tail = self.inner.tail.load(Ordering::Acquire);

                // If the pipe is still empty...
                if distance(self.head, self.tail) == 0 {
                    // Check whether the pipe is closed or just empty.
                    if self.inner.closed.load(Ordering::Relaxed) {
                        return Poll::Ready(Ok(0));
                    } else {
                        return Poll::Pending;
                    }
                }
            }
        }

        // The pipe is not empty so remove the waker.
        self.inner.reader.take();

        // Yield with some small probability - this improves fairness.
        ready!(maybe_yield(cx));

        // Given an index in `0..2*cap`, returns the real index in `0..cap`.
        let real_index = |i: usize| {
            if i < cap {
                i
            } else {
                i - cap
            }
        };

        // Number of bytes read so far.
        let mut count = 0;

        loop {
            // Calculate how many bytes to read in this iteration.
            let n = (128 * 1024) // Not too many bytes in one go - better to wake the writer soon!
                .min(distance(self.head, self.tail)) // No more than bytes in the pipe.
                .min(cap - real_index(self.head)); // Don't go past the buffer boundary.

            // Create a slice of data in the pipe buffer.
            let pipe_slice =
                unsafe { slice::from_raw_parts(self.inner.buffer.add(real_index(self.head)), n) };

            // Copy bytes from the pipe buffer into `dest`.
            let n = dest.write(pipe_slice)?;
            count += n;

            // If pipe is empty or `dest` is full, return.
            if n == 0 {
                return Poll::Ready(Ok(count));
            }

            // Move the head forward.
            if self.head + n < 2 * cap {
                self.head += n;
            } else {
                self.head = 0;
            }

            // Store the current head index.
            self.inner.head.store(self.head, Ordering::Release);

            // Wake the writer because the pipe is not full.
            self.inner.writer.wake();
        }
    }
}

impl Writer {
    /// Reads bytes from blocking `src` and writes into this writer.
    fn fill(&mut self, cx: &mut Context<'_>, mut src: impl Read) -> Poll<io::Result<usize>> {
        // Just a quick check if the pipe is closed, which is why a relaxed load is okay.
        if self.inner.closed.load(Ordering::Relaxed) {
            return Poll::Ready(Ok(0));
        }

        // Calculates the distance between two indices.
        let cap = self.inner.cap;
        let distance = |a: usize, b: usize| {
            if a <= b {
                b - a
            } else {
                2 * cap - (a - b)
            }
        };

        // If the pipe appears to be full...
        if distance(self.head, self.tail) == cap {
            // Reload the head in case it's become stale.
            self.head = self.inner.head.load(Ordering::Acquire);

            // If the pipe is now really empty...
            if distance(self.head, self.tail) == cap {
                // Register the waker.
                self.inner.writer.register(cx.waker());
                atomic::fence(Ordering::SeqCst);

                // Reload the head after registering the waker.
                self.head = self.inner.head.load(Ordering::Acquire);

                // If the pipe is still full...
                if distance(self.head, self.tail) == cap {
                    // Check whether the pipe is closed or just full.
                    if self.inner.closed.load(Ordering::Relaxed) {
                        return Poll::Ready(Ok(0));
                    } else {
                        return Poll::Pending;
                    }
                }
            }
        }

        // The pipe is not full so remove the waker.
        self.inner.writer.take();

        // Yield with some small probability - this improves fairness.
        ready!(maybe_yield(cx));

        // Given an index in `0..2*cap`, returns the real index in `0..cap`.
        let real_index = |i: usize| {
            if i < cap {
                i
            } else {
                i - cap
            }
        };

        // Number of bytes written so far.
        let mut count = 0;

        loop {
            // Calculate how many bytes to write in this iteration.
            let n = (128 * 1024) // Not too many bytes in one go - better to wake the reader soon!
                .min(self.zeroed_until * 2 + 4096) // Don't zero too many bytes when starting.
                .min(cap - distance(self.head, self.tail)) // No more than space in the pipe.
                .min(cap - real_index(self.tail)); // Don't go past the buffer boundary.

            // Create a slice of available space in the pipe buffer.
            let pipe_slice_mut = unsafe {
                let from = real_index(self.tail);
                let to = from + n;

                // Make sure all bytes in the slice are initialized.
                if self.zeroed_until < to {
                    self.inner
                        .buffer
                        .add(self.zeroed_until)
                        .write_bytes(0u8, to - self.zeroed_until);
                    self.zeroed_until = to;
                }

                slice::from_raw_parts_mut(self.inner.buffer.add(from), n)
            };

            // Copy bytes from `src` into the piper buffer.
            let n = src.read(pipe_slice_mut)?;
            count += n;

            // If the pipe is full or closed, or `src` is empty, return.
            if n == 0 || self.inner.closed.load(Ordering::Relaxed) {
                return Poll::Ready(Ok(count));
            }

            // Move the tail forward.
            if self.tail + n < 2 * cap {
                self.tail += n;
            } else {
                self.tail = 0;
            }

            // Store the current tail index.
            self.inner.tail.store(self.tail, Ordering::Release);

            // Wake the reader because the pipe is not empty.
            self.inner.reader.wake();
        }
    }
}

/// Yield with some small probability.
fn maybe_yield(cx: &mut Context<'_>) -> Poll<()> {
    if fastrand::usize(..100) == 0 {
        cx.waker().wake_by_ref();
        Poll::Pending
    } else {
        Poll::Ready(())
    }
}