#[repr(C)]pub struct Transform<T: RealField, C: TCategory, const D: usize> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, { /* private fields */ }
Expand description
A transformation matrix in homogeneous coordinates.
It is stored as a matrix with dimensions (D + 1, D + 1)
, e.g., it stores a 4x4 matrix for a
3D transformation.
Implementations
sourceimpl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcepub fn from_matrix_unchecked(
matrix: OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
pub fn from_matrix_unchecked(
matrix: OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Creates a new transformation from the given homogeneous matrix. The transformation category
of Self
is not checked to be verified by the given matrix.
sourcepub fn into_inner(
self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn into_inner(
self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
Retrieves the underlying matrix.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(t.into_inner(), m);
sourcepub fn unwrap(
self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
👎 Deprecated: use .into_inner()
instead
pub fn unwrap(
self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
use .into_inner()
instead
Retrieves the underlying matrix. Deprecated: Use Transform::into_inner instead.
sourcepub fn matrix(
&self
) -> &OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn matrix(
&self
) -> &OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
A reference to the underlying matrix.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(*t.matrix(), m);
sourcepub fn matrix_mut_unchecked(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn matrix_mut_unchecked(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
A mutable reference to the underlying matrix.
It is _unchecked
because direct modifications of this matrix may break invariants
identified by this transformation category.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let mut t = Transform2::from_matrix_unchecked(m);
t.matrix_mut_unchecked().m12 = 42.0;
t.matrix_mut_unchecked().m23 = 90.0;
let expected = Matrix3::new(1.0, 42.0, 0.0,
3.0, 4.0, 90.0,
0.0, 0.0, 1.0);
assert_eq!(*t.matrix(), expected);
sourcepub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> Transform<T, CNew, D>
pub fn set_category<CNew: SuperTCategoryOf<C>>(self) -> Transform<T, CNew, D>
Sets the category of this transform.
This can be done only if the new category is more general than the current one, e.g., a
transform with category TProjective
cannot be converted to a transform with category
TAffine
because not all projective transformations are affine (the other way-round is
valid though).
sourcepub fn clone_owned(&self) -> Transform<T, C, D>
👎 Deprecated: This method is redundant with automatic Copy
and the .clone()
method and will be removed in a future release.
pub fn clone_owned(&self) -> Transform<T, C, D>
This method is redundant with automatic Copy
and the .clone()
method and will be removed in a future release.
Clones this transform into one that owns its data.
sourcepub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
Converts this transform into its equivalent homogeneous transformation matrix.
Examples
let m = Matrix3::new(1.0, 2.0, 0.0,
3.0, 4.0, 0.0,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
assert_eq!(t.into_inner(), m);
sourcepub fn try_inverse(self) -> Option<Transform<T, C, D>>
pub fn try_inverse(self) -> Option<Transform<T, C, D>>
Attempts to invert this transformation. You may use .inverse
instead of this
transformation has a subcategory of TProjective
(i.e. if it is a Projective{2,3}
or Affine{2,3}
).
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
let inv_t = t.try_inverse().unwrap();
assert_relative_eq!(t * inv_t, Transform2::identity());
assert_relative_eq!(inv_t * t, Transform2::identity());
// Non-invertible case.
let m = Matrix3::new(0.0, 2.0, 1.0,
3.0, 0.0, 5.0,
0.0, 0.0, 0.0);
let t = Transform2::from_matrix_unchecked(m);
assert!(t.try_inverse().is_none());
sourcepub fn inverse(self) -> Transform<T, C, D> where
C: SubTCategoryOf<TProjective>,
pub fn inverse(self) -> Transform<T, C, D> where
C: SubTCategoryOf<TProjective>,
Inverts this transformation. Use .try_inverse
if this transform has the TGeneral
category (i.e., a Transform{2,3}
may not be invertible).
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let proj = Projective2::from_matrix_unchecked(m);
let inv_t = proj.inverse();
assert_relative_eq!(proj * inv_t, Projective2::identity());
assert_relative_eq!(inv_t * proj, Projective2::identity());
sourcepub fn try_inverse_mut(&mut self) -> bool
pub fn try_inverse_mut(&mut self) -> bool
Attempts to invert this transformation in-place. You may use .inverse_mut
instead of this
transformation has a subcategory of TProjective
.
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let t = Transform2::from_matrix_unchecked(m);
let mut inv_t = t;
assert!(inv_t.try_inverse_mut());
assert_relative_eq!(t * inv_t, Transform2::identity());
assert_relative_eq!(inv_t * t, Transform2::identity());
// Non-invertible case.
let m = Matrix3::new(0.0, 2.0, 1.0,
3.0, 0.0, 5.0,
0.0, 0.0, 0.0);
let mut t = Transform2::from_matrix_unchecked(m);
assert!(!t.try_inverse_mut());
sourcepub fn inverse_mut(&mut self) where
C: SubTCategoryOf<TProjective>,
pub fn inverse_mut(&mut self) where
C: SubTCategoryOf<TProjective>,
Inverts this transformation in-place. Use .try_inverse_mut
if this transform has the
TGeneral
category (it may not be invertible).
Examples
let m = Matrix3::new(2.0, 2.0, -0.3,
3.0, 4.0, 0.1,
0.0, 0.0, 1.0);
let proj = Projective2::from_matrix_unchecked(m);
let mut inv_t = proj;
inv_t.inverse_mut();
assert_relative_eq!(proj * inv_t, Projective2::identity());
assert_relative_eq!(inv_t * proj, Projective2::identity());
sourceimpl<T, C, const D: usize> Transform<T, C, D> where
T: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Transform<T, C, D> where
T: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Transform the given point by this transformation.
This is the same as the multiplication self * pt
.
sourcepub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Transform the given vector by this transformation, ignoring the translational component of the transformation.
This is the same as the multiplication self * v
.
sourceimpl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
C: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, DimNameSum<Const<D>, U1>>,
sourcepub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Transform the given point by the inverse of this transformation. This may be cheaper than inverting the transformation and transforming the point.
sourcepub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Transform the given vector by the inverse of this transformation. This may be cheaper than inverting the transformation and transforming the vector.
sourceimpl<T: RealField, const D: usize> Transform<T, TGeneral, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, const D: usize> Transform<T, TGeneral, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcepub fn matrix_mut(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
pub fn matrix_mut(
&mut self
) -> &mut OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
A mutable reference to underlying matrix. Use .matrix_mut_unchecked
instead if this
transformation category is not TGeneral
.
sourceimpl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcepub fn identity() -> Self
pub fn identity() -> Self
Creates a new identity transform.
Example
let pt = Point2::new(1.0, 2.0);
let t = Projective2::identity();
assert_eq!(t * pt, pt);
let aff = Affine2::identity();
assert_eq!(aff * pt, pt);
let aff = Transform2::identity();
assert_eq!(aff * pt, pt);
// Also works in 3D.
let pt = Point3::new(1.0, 2.0, 3.0);
let t = Projective3::identity();
assert_eq!(t * pt, pt);
let aff = Affine3::identity();
assert_eq!(aff * pt, pt);
let aff = Transform3::identity();
assert_eq!(aff * pt, pt);
Trait Implementations
sourceimpl<T: RealField, C: TCategory, const D: usize> AbsDiffEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> AbsDiffEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
sourcefn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
sourcefn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of AbsDiffEq::abs_diff_eq
.
sourceimpl<T: RealField, C: TCategory, const D: usize> Clone for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Clone for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T: Debug + RealField, C: Debug + TCategory, const D: usize> Debug for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: Debug + RealField, C: Debug + TCategory, const D: usize> Debug for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C> Div<&'b Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'b, T, C> Div<&'b Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<'a, 'b, T, C> Div<&'b Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, 'b, T, C> Div<&'b Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, CA, CB, const D: usize> Div<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Div<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b Translation<T, D>) -> Self::Output
fn div(self, rhs: &'b Translation<T, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Div<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b Translation<T, D>) -> Self::Output
fn div(self, rhs: &'b Translation<T, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T, C> Div<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'b, T, C> Div<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T, C> Div<&'b Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, 'b, T, C> Div<&'b Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C> Div<Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<T, C> Div<Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<'a, T, C> Div<Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, T, C> Div<Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, CA, CB, const D: usize> Div<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Div<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: Translation<T, D>) -> Self::Output
fn div(self, rhs: Translation<T, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Div<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: Translation<T, D>) -> Self::Output
fn div(self, rhs: Translation<T, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T, C> Div<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<T, C> Div<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T, C> Div<Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, T, C> Div<Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T, C, const D: usize> DivAssign<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> DivAssign<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn div_assign(&mut self, rhs: &'b Rotation<T, D>)
fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
Performs the /=
operation. Read more
sourceimpl<'b, T, CA, CB, const D: usize> DivAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> DivAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn div_assign(&mut self, rhs: &'b Transform<T, CB, D>)
fn div_assign(&mut self, rhs: &'b Transform<T, CB, D>)
Performs the /=
operation. Read more
sourceimpl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> DivAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn div_assign(&mut self, rhs: &'b Translation<T, D>)
fn div_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the /=
operation. Read more
sourceimpl<'b, T, C> DivAssign<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
impl<'b, T, C> DivAssign<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
sourcefn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
Performs the /=
operation. Read more
sourceimpl<T, C, const D: usize> DivAssign<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> DivAssign<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn div_assign(&mut self, rhs: Rotation<T, D>)
fn div_assign(&mut self, rhs: Rotation<T, D>)
Performs the /=
operation. Read more
sourceimpl<T, CA, CB, const D: usize> DivAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> DivAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: SuperTCategoryOf<CB>,
CB: SubTCategoryOf<TProjective>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn div_assign(&mut self, rhs: Transform<T, CB, D>)
fn div_assign(&mut self, rhs: Transform<T, CB, D>)
Performs the /=
operation. Read more
sourceimpl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> DivAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn div_assign(&mut self, rhs: Translation<T, D>)
fn div_assign(&mut self, rhs: Translation<T, D>)
Performs the /=
operation. Read more
sourceimpl<T, C> DivAssign<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
impl<T, C> DivAssign<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
sourcefn div_assign(&mut self, rhs: UnitQuaternion<T>)
fn div_assign(&mut self, rhs: UnitQuaternion<T>)
Performs the /=
operation. Read more
sourceimpl<T: RealField, C, const D: usize> From<Transform<T, C, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C, const D: usize> From<Transform<T, C, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T: RealField, C: TCategory, const D: usize> Index<(usize, usize)> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Index<(usize, usize)> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T: RealField, const D: usize> IndexMut<(usize, usize)> for Transform<T, TGeneral, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, const D: usize> IndexMut<(usize, usize)> for Transform<T, TGeneral, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Mul<&'b Point<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Point<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Mul<&'b Point<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Point<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T, C> Mul<&'b Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'b, T, C> Mul<&'b Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<'a, 'b, T, C> Mul<&'b Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, 'b, T, C> Mul<&'b Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, CA, CB, const D: usize> Mul<&'b Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Translation<T, D>) -> Self::Output
fn mul(self, rhs: &'b Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, const D: usize> Mul<&'b Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Translation<T, D>) -> Self::Output
fn mul(self, rhs: &'b Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T, C> Mul<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'b, T, C> Mul<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T, C> Mul<&'b Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, 'b, T, C> Mul<&'b Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Mul<Point<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Point<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Mul<Point<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Point<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Rotation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T, C> Mul<Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<T, C> Mul<Transform<T, C, 3_usize>> for UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<'a, T, C> Mul<Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, T, C> Mul<Transform<T, C, 3_usize>> for &'a UnitQuaternion<T> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
sourceimpl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Rotation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Isometry<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Transform<T, C, D>> for Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Transform<T, C, D>> for &'a Translation<T, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, CA, CB, const D: usize> Mul<Transform<T, CB, D>> for &'a Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategoryMul<CB>,
CB: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> Mul<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Translation<T, D>) -> Self::Output
fn mul(self, rhs: Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, const D: usize> Mul<Translation<T, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Translation<T, D>) -> Self::Output
fn mul(self, rhs: Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T, C> Mul<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<T, C> Mul<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T, C> Mul<Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, T, C> Mul<Unit<Quaternion<T>>> for &'a Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
type Output = Transform<T, C::Representative, 3>
type Output = Transform<T, C::Representative, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, C, const D: usize> MulAssign<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> MulAssign<&'b Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, CA, CB, const D: usize> MulAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, CA, CB, const D: usize> MulAssign<&'b Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: &'b Transform<T, CB, D>)
fn mul_assign(&mut self, rhs: &'b Transform<T, CB, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, const D: usize> MulAssign<&'b Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: &'b Translation<T, D>)
fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, C> MulAssign<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
impl<'b, T, C> MulAssign<&'b Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
sourcefn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Isometry<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: Isometry<T, R, D>)
fn mul_assign(&mut self, rhs: Isometry<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<T, C, const D: usize> MulAssign<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> MulAssign<Rotation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: Rotation<T, D>)
fn mul_assign(&mut self, rhs: Rotation<T, D>)
Performs the *=
operation. Read more
sourceimpl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<T, CA, CB, const D: usize> MulAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, CA, CB, const D: usize> MulAssign<Transform<T, CB, D>> for Transform<T, CA, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
CA: TCategory,
CB: SubTCategoryOf<CA>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: Transform<T, CB, D>)
fn mul_assign(&mut self, rhs: Transform<T, CB, D>)
Performs the *=
operation. Read more
sourceimpl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, const D: usize> MulAssign<Translation<T, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: Translation<T, D>)
fn mul_assign(&mut self, rhs: Translation<T, D>)
Performs the *=
operation. Read more
sourceimpl<T, C> MulAssign<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
impl<T, C> MulAssign<Unit<Quaternion<T>>> for Transform<T, C, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategory,
sourcefn mul_assign(&mut self, rhs: UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T: RealField, C: TCategory, const D: usize> One for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> One for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T: RealField, C: TCategory, const D: usize> PartialEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> PartialEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T: RealField, C: TCategory, const D: usize> RelativeEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> RelativeEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
sourcefn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
A test for equality that uses a relative comparison if the values are far apart.
sourcefn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
The inverse of RelativeEq::relative_eq
.
sourceimpl<T: RealField, C, const D: usize> SimdValue for Transform<T, C, D> where
T::Element: Scalar,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T::Element, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C, const D: usize> SimdValue for Transform<T, C, D> where
T::Element: Scalar,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T::Element, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceunsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
Extracts the i-th lane of self
without bound-checking.
sourcefn replace(&mut self, i: usize, val: Self::Element)
fn replace(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of self
by val
. Read more
sourceunsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of self
by val
without bound-checking.
sourcefn select(self, cond: Self::SimdBool, other: Self) -> Self
fn select(self, cond: Self::SimdBool, other: Self) -> Self
Merges self
and other
depending on the lanes of cond
. Read more
sourceimpl<T1, T2, C, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Transform<T1, C, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
impl<T1, T2, C, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Transform<T1, C, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C: TCategory,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
sourcefn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, C> SubsetOf<Transform<T2, C, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
sourcefn to_superset(&self) -> Transform<T2, C, 2>
fn to_superset(&self) -> Transform<T2, C, 2>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, 2>) -> bool
fn is_in_subset(t: &Transform<T2, C, 2>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, 2>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, 2>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
sourcefn to_superset(&self) -> Transform<T2, C, 3>
fn to_superset(&self) -> Transform<T2, C, 3>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, 3>) -> bool
fn is_in_subset(t: &Transform<T2, C, 3>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
sourcefn to_superset(&self) -> Transform<T2, C, 3>
fn to_superset(&self) -> Transform<T2, C, 3>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, 3>) -> bool
fn is_in_subset(t: &Transform<T2, C, 3>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Isometry<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, C1, C2, const D: usize> SubsetOf<Transform<T2, C2, D>> for Transform<T1, C1, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C1: TCategory,
C2: SuperTCategoryOf<C1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
impl<T1, T2, C1, C2, const D: usize> SubsetOf<Transform<T2, C2, D>> for Transform<T1, C1, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField,
C1: TCategory,
C2: SuperTCategoryOf<C1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
T1::Epsilon: Copy,
T2::Epsilon: Copy,
sourcefn to_superset(&self) -> Transform<T2, C2, D>
fn to_superset(&self) -> Transform<T2, C2, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C2, D>) -> bool
fn is_in_subset(t: &Transform<T2, C2, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C2, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C2, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T: RealField, C: TCategory, const D: usize> UlpsEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> UlpsEq<Transform<T, C, D>> for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
T::Epsilon: Copy,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: RealField, C: TCategory, const D: usize> Copy for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Owned<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>: Copy,
impl<T: RealField + Eq, C: TCategory, const D: usize> Eq for Transform<T, C, D> where
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Auto Trait Implementations
impl<T, C, const D: usize> !RefUnwindSafe for Transform<T, C, D>
impl<T, C, const D: usize> !Send for Transform<T, C, D>
impl<T, C, const D: usize> !Sync for Transform<T, C, D>
impl<T, C, const D: usize> !Unpin for Transform<T, C, D>
impl<T, C, const D: usize> !UnwindSafe for Transform<T, C, D>
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more