Struct nalgebra::geometry::Similarity
source · [−]#[repr(C)]pub struct Similarity<T: Scalar, R, const D: usize> {
pub isometry: Isometry<T, R, D>,
/* private fields */
}
Expand description
A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
Fields
isometry: Isometry<T, R, D>
The part of this similarity that does not include the scaling factor.
Implementations
sourceimpl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D> where
R: AbstractRotation<T, D>,
impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D> where
R: AbstractRotation<T, D>,
sourcepub fn from_parts(
translation: Translation<T, D>,
rotation: R,
scaling: T
) -> Self
pub fn from_parts(
translation: Translation<T, D>,
rotation: R,
scaling: T
) -> Self
Creates a new similarity from its rotational and translational parts.
sourcepub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self
pub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self
Creates a new similarity from its rotational and translational parts.
sourcepub fn set_scaling(&mut self, scaling: T)
pub fn set_scaling(&mut self, scaling: T)
The scaling factor of this similarity transformation.
sourceimpl<T: Scalar, R, const D: usize> Similarity<T, R, D>
impl<T: Scalar, R, const D: usize> Similarity<T, R, D>
sourceimpl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcepub fn from_scaling(scaling: T) -> Self
pub fn from_scaling(scaling: T) -> Self
Creates a new similarity that applies only a scaling factor.
sourcepub fn inverse_mut(&mut self)
pub fn inverse_mut(&mut self)
Inverts self
in-place.
sourcepub fn prepend_scaling(&self, scaling: T) -> Self
pub fn prepend_scaling(&self, scaling: T) -> Self
The similarity transformation that applies a scaling factor scaling
before self
.
sourcepub fn append_scaling(&self, scaling: T) -> Self
pub fn append_scaling(&self, scaling: T) -> Self
The similarity transformation that applies a scaling factor scaling
after self
.
sourcepub fn prepend_scaling_mut(&mut self, scaling: T)
pub fn prepend_scaling_mut(&mut self, scaling: T)
Sets self
to the similarity transformation that applies a scaling factor scaling
before self
.
sourcepub fn append_scaling_mut(&mut self, scaling: T)
pub fn append_scaling_mut(&mut self, scaling: T)
Sets self
to the similarity transformation that applies a scaling factor scaling
after self
.
sourcepub fn append_translation_mut(&mut self, t: &Translation<T, D>)
pub fn append_translation_mut(&mut self, t: &Translation<T, D>)
Appends to self
the given translation in-place.
sourcepub fn append_rotation_mut(&mut self, r: &R)
pub fn append_rotation_mut(&mut self, r: &R)
Appends to self
the given rotation in-place.
sourcepub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>)
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>)
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
sourcepub fn append_rotation_wrt_center_mut(&mut self, r: &R)
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Transform the given point by this similarity.
This is the same as the multiplication self * pt
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 3.0);
let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
sourcepub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Transform the given vector by this similarity, ignoring the translational component.
This is the same as the multiplication self * t
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 3.0);
let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
sourcepub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Transform the given point by the inverse of this similarity. This may be cheaper than inverting the similarity and then transforming the given point.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 2.0);
let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
sourcepub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Transform the given vector by the inverse of this similarity, ignoring the translational component. This may be cheaper than inverting the similarity and then transforming the given vector.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 2.0);
let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
sourceimpl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
sourcepub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_homogeneous(
&self
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this similarity into its equivalent homogeneous transformation matrix.
sourceimpl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcepub fn rotation_wrt_point(r: R, p: Point<T, D>, scaling: T) -> Self
pub fn rotation_wrt_point(r: R, p: Point<T, D>, scaling: T) -> Self
The similarity that applies the scaling factor scaling
, followed by the rotation r
with
its axis passing through the point p
.
Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
let pt = Point2::new(3.0, 2.0);
let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0);
assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
sourceimpl<T: SimdRealField> Similarity<T, Rotation2<T>, 2> where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, Rotation2<T>, 2> where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
Creates a new similarity from a translation, a rotation, and an uniform scaling factor.
Example
let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, Rotation2<To>, 2> where
Similarity<To, Rotation2<To>, 2>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> Similarity<To, Rotation2<To>, 2> where
Similarity<To, Rotation2<To>, 2>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let sim = SimilarityMatrix2::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, SimilarityMatrix2::<f32>::identity());
sourceimpl<T: SimdRealField> Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
Creates a new similarity from a translation and a rotation angle.
Example
let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, UnitComplex<To>, 2> where
Similarity<To, UnitComplex<To>, 2>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> Similarity<To, UnitComplex<To>, 2> where
Similarity<To, UnitComplex<To>, 2>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let sim = Similarity2::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity2::<f32>::identity());
sourceimpl<T: SimdRealField> Similarity<T, Rotation3<T>, 3> where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, Rotation3<T>, 3> where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
// Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, Rotation3<To>, 3> where
Similarity<To, Rotation3<To>, 3>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> Similarity<To, Rotation3<To>, 3> where
Similarity<To, Rotation3<To>, 3>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let sim = Similarity3::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity3::<f32>::identity());
sourcepub fn face_towards(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
pub fn face_towards(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
sourcepub fn new_observer_frames(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
👎 Deprecated: renamed to face_towards
pub fn new_observer_frames(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
renamed to face_towards
Deprecated: Use [SimilarityMatrix3::face_towards] instead.
sourcepub fn look_at_rh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
pub fn look_at_rh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
sourcepub fn look_at_lh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
pub fn look_at_lh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
sourceimpl<T: SimdRealField> Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
// Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, UnitQuaternion<To>, 3> where
Similarity<To, UnitQuaternion<To>, 3>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> Similarity<To, UnitQuaternion<To>, 3> where
Similarity<To, UnitQuaternion<To>, 3>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let sim = Similarity3::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity3::<f32>::identity());
sourcepub fn face_towards(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
pub fn face_towards(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
sourcepub fn new_observer_frames(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
👎 Deprecated: renamed to face_towards
pub fn new_observer_frames(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
renamed to face_towards
Deprecated: Use [SimilarityMatrix3::face_towards] instead.
sourcepub fn look_at_rh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
pub fn look_at_rh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
sourcepub fn look_at_lh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
pub fn look_at_lh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T
) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
Trait Implementations
sourceimpl<T: RealField, R, const D: usize> AbsDiffEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
impl<T: RealField, R, const D: usize> AbsDiffEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
sourcefn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
sourcefn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
sourcefn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of AbsDiffEq::abs_diff_eq
.
sourceimpl<T: Scalar + Zero, R: AbstractRotation<T, D> + Clone, const D: usize> Clone for Similarity<T, R, D>
impl<T: Scalar + Zero, R: AbstractRotation<T, D> + Clone, const D: usize> Clone for Similarity<T, R, D>
sourceimpl<T, R, const D: usize> Display for Similarity<T, R, D> where
T: RealField + Display,
R: AbstractRotation<T, D> + Display,
impl<T, R, const D: usize> Display for Similarity<T, R, D> where
T: RealField + Display,
R: AbstractRotation<T, D> + Display,
sourceimpl<T: RealField, R, const D: usize> Distribution<Similarity<T, R, D>> for Standard where
R: AbstractRotation<T, D>,
Standard: Distribution<T> + Distribution<R>,
impl<T: RealField, R, const D: usize> Distribution<Similarity<T, R, D>> for Standard where
R: AbstractRotation<T, D>,
Standard: Distribution<T> + Distribution<R>,
sourcefn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<T, R, D>
fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<T, R, D>
Generate an arbitrary random variate for testing purposes.
sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the /
operator.
sourceimpl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the /
operator.
sourceimpl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitComplex<T>) -> Self::Output
fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitComplex<T>) -> Self::Output
fn div(self, rhs: &'b UnitComplex<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: Similarity<T, R, D>) -> Self::Output
fn div(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the /
operator.
sourceimpl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the /
operator.
sourceimpl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField> Div<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitComplex<T>) -> Self::Output
fn div(self, rhs: UnitComplex<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitComplex<T>) -> Self::Output
fn div(self, rhs: UnitComplex<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitQuaternion<T>) -> Self::Output
fn div(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn div_assign(&mut self, rhs: &'b Isometry<T, R, D>)
fn div_assign(&mut self, rhs: &'b Isometry<T, R, D>)
Performs the /=
operation. Read more
sourceimpl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: &'b Rotation<T, D>)
fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
Performs the /=
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn div_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn div_assign(&mut self, rhs: &'b Similarity<T, R, D>)
Performs the /=
operation. Read more
sourceimpl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: &'b UnitComplex<T>)
fn div_assign(&mut self, rhs: &'b UnitComplex<T>)
Performs the /=
operation. Read more
sourceimpl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
Performs the /=
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn div_assign(&mut self, rhs: Isometry<T, R, D>)
fn div_assign(&mut self, rhs: Isometry<T, R, D>)
Performs the /=
operation. Read more
sourceimpl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: Rotation<T, D>)
fn div_assign(&mut self, rhs: Rotation<T, D>)
Performs the /=
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> DivAssign<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> DivAssign<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn div_assign(&mut self, rhs: Similarity<T, R, D>)
fn div_assign(&mut self, rhs: Similarity<T, R, D>)
Performs the /=
operation. Read more
sourceimpl<T> DivAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> DivAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: UnitComplex<T>)
fn div_assign(&mut self, rhs: UnitComplex<T>)
Performs the /=
operation. Read more
sourceimpl<T> DivAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> DivAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: UnitQuaternion<T>)
fn div_assign(&mut self, rhs: UnitQuaternion<T>)
Performs the /=
operation. Read more
sourceimpl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 16]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 16]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
impl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 16]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 16]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
sourceimpl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 2]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 2]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
impl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 2]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 2]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
sourceimpl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 4]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 4]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
impl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 4]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 4]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
sourceimpl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 8]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 8]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
impl<T: Scalar + Zero + PrimitiveSimdValue, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Similarity<T, R, D> where
T: From<[<T as SimdValue>::Element; 8]>,
R: SimdValue + AbstractRotation<T, D> + From<[<R as SimdValue>::Element; 8]>,
R::Element: AbstractRotation<T::Element, D>,
T::Element: Scalar + Zero + Copy,
R::Element: Scalar + Zero + Copy,
sourceimpl<T: SimdRealField, R, const D: usize> From<Similarity<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: SimdRealField, R, const D: usize> From<Similarity<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn from(sim: Similarity<T, R, D>) -> Self
fn from(sim: Similarity<T, R, D>) -> Self
Performs the conversion.
sourceimpl<T: Scalar + Hash, R: Hash, const D: usize> Hash for Similarity<T, R, D> where
Owned<T, Const<D>>: Hash,
impl<T: Scalar + Hash, R: Hash, const D: usize> Hash for Similarity<T, R, D> where
Owned<T, Const<D>>: Hash,
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, right: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, right: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the *
operator.
sourceimpl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the *
operator.
sourceimpl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: &'b Translation<T, D>) -> Self::Output
fn mul(self, right: &'b Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: &'b Translation<T, D>) -> Self::Output
fn mul(self, right: &'b Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output
fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output
fn mul(self, rhs: &'b UnitComplex<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1_usize>, ArrayStorage<T, D, 1_usize>>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D> where
T::Element: SimdRealField,
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: Similarity<T, R, D>) -> Self::Output
fn mul(self, right: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: Similarity<T, R, D>) -> Self::Output
fn mul(self, right: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
type Output = Transform<T, C::Representative, D>
type Output = Transform<T, C::Representative, D>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
fn mul(self, rhs: Similarity<T, R, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the *
operator.
sourceimpl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D> where
T::Element: SimdRealField,
type Output = Similarity<T, Rotation<T, D>, D>
type Output = Similarity<T, Rotation<T, D>, D>
The resulting type after applying the *
operator.
sourceimpl<T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2_usize>> for UnitComplex<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2_usize>> for &'a UnitComplex<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3_usize>> for &'a UnitQuaternion<T> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourceimpl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: Translation<T, D>) -> Self::Output
fn mul(self, right: Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
The resulting type after applying the *
operator.
sourcefn mul(self, right: Translation<T, D>) -> Self::Output
fn mul(self, right: Translation<T, D>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField> Mul<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitComplex<T>) -> Self::Output
fn mul(self, rhs: UnitComplex<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitComplex<T>, 2>
type Output = Similarity<T, UnitComplex<T>, 2>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitComplex<T>) -> Self::Output
fn mul(self, rhs: UnitComplex<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3> where
T::Element: SimdRealField,
type Output = Similarity<T, UnitQuaternion<T>, 3>
type Output = Similarity<T, UnitQuaternion<T>, 3>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn mul_assign(&mut self, rhs: &'b Translation<T, D>)
fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
Performs the *=
operation. Read more
sourceimpl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: &'b UnitComplex<T>)
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)
Performs the *=
operation. Read more
sourceimpl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn mul_assign(&mut self, rhs: Isometry<T, R, D>)
fn mul_assign(&mut self, rhs: Isometry<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: Rotation<T, D>)
fn mul_assign(&mut self, rhs: Rotation<T, D>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> MulAssign<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Similarity<T, R, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn mul_assign(&mut self, rhs: Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn mul_assign(&mut self, rhs: Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourcefn mul_assign(&mut self, rhs: Translation<T, D>)
fn mul_assign(&mut self, rhs: Translation<T, D>)
Performs the *=
operation. Read more
sourceimpl<T> MulAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> MulAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: UnitComplex<T>)
fn mul_assign(&mut self, rhs: UnitComplex<T>)
Performs the *=
operation. Read more
sourceimpl<T> MulAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
impl<T> MulAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3> where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField, R, const D: usize> One for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
impl<T: SimdRealField, R, const D: usize> One for Similarity<T, R, D> where
T::Element: SimdRealField,
R: AbstractRotation<T, D>,
sourceimpl<T: SimdRealField, R, const D: usize> PartialEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + PartialEq,
impl<T: SimdRealField, R, const D: usize> PartialEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + PartialEq,
sourceimpl<T: RealField, R, const D: usize> RelativeEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
impl<T: RealField, R, const D: usize> RelativeEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
sourcefn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
sourcefn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
A test for equality that uses a relative comparison if the values are far apart.
sourcefn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
The inverse of RelativeEq::relative_eq
.
sourceimpl<T: SimdRealField, R, const D: usize> SimdValue for Similarity<T, R, D> where
T::Element: SimdRealField,
R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>,
R::Element: AbstractRotation<T::Element, D>,
impl<T: SimdRealField, R, const D: usize> SimdValue for Similarity<T, R, D> where
T::Element: SimdRealField,
R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>,
R::Element: AbstractRotation<T::Element, D>,
type Element = Similarity<T::Element, R::Element, D>
type Element = Similarity<T::Element, R::Element, D>
The type of the elements of each lane of this SIMD value.
sourceunsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
Extracts the i-th lane of self
without bound-checking.
sourcefn replace(&mut self, i: usize, val: Self::Element)
fn replace(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of self
by val
. Read more
sourceunsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
Replaces the i-th lane of self
by val
without bound-checking.
sourcefn select(self, cond: Self::SimdBool, other: Self) -> Self
fn select(self, cond: Self::SimdBool, other: Self) -> Self
Merges self
and other
depending on the lanes of cond
. Read more
sourceimpl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, <Const<D> as DimNameAdd<Const<1_usize>>>::Output>>::Buffer>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset(
&self
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R> SubsetOf<Similarity<T2, R, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 2> + SupersetOf<Self>,
impl<T1, T2, R> SubsetOf<Similarity<T2, R, 2_usize>> for UnitComplex<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 2> + SupersetOf<Self>,
sourcefn to_superset(&self) -> Similarity<T2, R, 2>
fn to_superset(&self) -> Similarity<T2, R, 2>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity<T2, R, 2>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, 2>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity<T2, R, 2>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, 2>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R> SubsetOf<Similarity<T2, R, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
impl<T1, T2, R> SubsetOf<Similarity<T2, R, 3_usize>> for UnitQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
sourcefn to_superset(&self) -> Similarity<T2, R, 3>
fn to_superset(&self) -> Similarity<T2, R, 3>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D> + SupersetOf<Self>,
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D> + SupersetOf<Self>,
sourcefn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
sourcefn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
sourcefn to_superset(&self) -> Similarity<T2, R2, D>
fn to_superset(&self) -> Similarity<T2, R2, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Similarity<T1, R1, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Similarity<T1, R1, D> where
T1: RealField + SubsetOf<T2>,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
sourcefn to_superset(&self) -> Similarity<T2, R2, D>
fn to_superset(&self) -> Similarity<T2, R2, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3_usize>> for UnitDualQuaternion<T1> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
sourcefn to_superset(&self) -> Similarity3<T2>
fn to_superset(&self) -> Similarity3<T2>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(sim: &Similarity3<T2>) -> bool
fn is_in_subset(sim: &Similarity3<T2>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(sim: &Similarity3<T2>) -> Self
fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D> where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
sourcefn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T: RealField, R, const D: usize> UlpsEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
impl<T: RealField, R, const D: usize> UlpsEq<Similarity<T, R, D>> for Similarity<T, R, D> where
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
T::Epsilon: Copy,
impl<T: Scalar + Copy + Zero, R: AbstractRotation<T, D> + Copy, const D: usize> Copy for Similarity<T, R, D> where
Owned<T, Const<D>>: Copy,
impl<T: SimdRealField, R, const D: usize> Eq for Similarity<T, R, D> where
R: AbstractRotation<T, D> + Eq,
Auto Trait Implementations
impl<T, R, const D: usize> RefUnwindSafe for Similarity<T, R, D> where
R: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, R, const D: usize> Send for Similarity<T, R, D> where
R: Send,
T: Send,
impl<T, R, const D: usize> Sync for Similarity<T, R, D> where
R: Sync,
T: Sync,
impl<T, R, const D: usize> Unpin for Similarity<T, R, D> where
R: Unpin,
T: Unpin,
impl<T, R, const D: usize> UnwindSafe for Similarity<T, R, D> where
R: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more