Struct nalgebra::geometry::DualQuaternion
source · [−]#[repr(C)]pub struct DualQuaternion<T: Scalar> {
pub real: Quaternion<T>,
pub dual: Quaternion<T>,
}
Expand description
A dual quaternion.
Indexing
DualQuaternions are stored as [..real, ..dual].
Both of the quaternion components are laid out in i, j, k, w
order.
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
assert_eq!(dq[0], 2.0);
assert_eq!(dq[1], 3.0);
assert_eq!(dq[4], 6.0);
assert_eq!(dq[7], 5.0);
NOTE: As of December 2020, dual quaternion support is a work in progress. If a feature that you need is missing, feel free to open an issue or a PR. See https://github.com/dimforge/nalgebra/issues/487
Fields
real: Quaternion<T>
The real component of the quaternion
dual: Quaternion<T>
The dual component of the quaternion
Implementations
sourceimpl<T: SimdRealField> DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> DualQuaternion<T> where
T::Element: SimdRealField,
sourcepub fn normalize(&self) -> Self
pub fn normalize(&self) -> Self
Normalizes this quaternion.
Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let dq_normalized = dq.normalize();
relative_eq!(dq_normalized.real.norm(), 1.0);
sourcepub fn normalize_mut(&mut self) -> T
pub fn normalize_mut(&mut self) -> T
Normalizes this quaternion.
Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);
dq.normalize_mut();
relative_eq!(dq.real.norm(), 1.0);
sourcepub fn conjugate(&self) -> Self
pub fn conjugate(&self) -> Self
The conjugate of this dual quaternion, containing the conjugate of the real and imaginary parts..
Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let conj = dq.conjugate();
assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
assert!(conj.real.w == 1.0);
assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
assert!(conj.dual.w == 5.0);
sourcepub fn conjugate_mut(&mut self)
pub fn conjugate_mut(&mut self)
Replaces this quaternion by its conjugate.
Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);
dq.conjugate_mut();
assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
assert!(dq.real.w == 1.0);
assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
assert!(dq.dual.w == 5.0);
sourcepub fn try_inverse(&self) -> Option<Self> where
T: RealField,
pub fn try_inverse(&self) -> Option<Self> where
T: RealField,
Inverts this dual quaternion if it is not zero.
Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let inverse = dq.try_inverse();
assert!(inverse.is_some());
assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());
//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let dq = DualQuaternion::from_real_and_dual(zero, zero);
let inverse = dq.try_inverse();
assert!(inverse.is_none());
sourcepub fn try_inverse_mut(&mut self) -> bool where
T: RealField,
pub fn try_inverse_mut(&mut self) -> bool where
T: RealField,
Inverts this dual quaternion in-place if it is not zero.
Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let mut dq_inverse = dq;
dq_inverse.try_inverse_mut();
assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());
//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
assert!(!dq.try_inverse_mut());
sourcepub fn lerp(&self, other: &Self, t: T) -> Self
pub fn lerp(&self, other: &Self, t: T) -> Self
Linear interpolation between two dual quaternions.
Computes self * (1 - t) + other * t
.
Example
let dq1 = DualQuaternion::from_real_and_dual(
Quaternion::new(1.0, 0.0, 0.0, 4.0),
Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
let dq2 = DualQuaternion::from_real_and_dual(
Quaternion::new(2.0, 0.0, 1.0, 0.0),
Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
Quaternion::new(1.25, 0.0, 0.25, 3.0),
Quaternion::new(0.0, 2.0, 0.0, 0.0)
));
sourceimpl<T: Scalar> DualQuaternion<T>
impl<T: Scalar> DualQuaternion<T>
sourcepub fn from_real_and_dual(real: Quaternion<T>, dual: Quaternion<T>) -> Self
pub fn from_real_and_dual(real: Quaternion<T>, dual: Quaternion<T>) -> Self
Creates a dual quaternion from its rotation and translation components.
Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(rot, trans);
assert_eq!(dq.real.w, 1.0);
sourcepub fn identity() -> Self where
T: SimdRealField,
pub fn identity() -> Self where
T: SimdRealField,
The dual quaternion multiplicative identity.
Example
let dq1 = DualQuaternion::identity();
let dq2 = DualQuaternion::from_real_and_dual(
Quaternion::new(1.,2.,3.,4.),
Quaternion::new(5.,6.,7.,8.)
);
assert_eq!(dq1 * dq2, dq2);
assert_eq!(dq2 * dq1, dq2);
sourcepub fn cast<To: Scalar>(self) -> DualQuaternion<To> where
DualQuaternion<To>: SupersetOf<Self>,
pub fn cast<To: Scalar>(self) -> DualQuaternion<To> where
DualQuaternion<To>: SupersetOf<Self>,
Cast the components of self
to another type.
Example
let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
let q2 = q.cast::<f32>();
assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));
sourceimpl<T: SimdRealField> DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> DualQuaternion<T> where
T::Element: SimdRealField,
sourcepub fn from_real(real: Quaternion<T>) -> Self
pub fn from_real(real: Quaternion<T>) -> Self
Creates a dual quaternion from only its real part, with no translation component.
Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dq = DualQuaternion::from_real(rot);
assert_eq!(dq.real.w, 1.0);
assert_eq!(dq.dual.w, 0.0);
Trait Implementations
sourceimpl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq<DualQuaternion<T>> for DualQuaternion<T>
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq<DualQuaternion<T>> for DualQuaternion<T>
type Epsilon = T
type Epsilon = T
Used for specifying relative comparisons.
sourcefn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
The default tolerance to use when testing values that are close together. Read more
sourcefn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
A test for equality that uses the absolute difference to compute the approximate equality of two numbers. Read more
sourcefn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of AbsDiffEq::abs_diff_eq
.
sourceimpl<'a, 'b, T: SimdRealField> Add<&'b DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Add<&'b DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the +
operator.
sourcefn add(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn add(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the +
operation. Read more
sourceimpl<'b, T: SimdRealField> Add<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Add<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the +
operator.
sourcefn add(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn add(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the +
operation. Read more
sourceimpl<'a, T: SimdRealField> Add<DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Add<DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the +
operator.
sourcefn add(self, rhs: DualQuaternion<T>) -> Self::Output
fn add(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the +
operation. Read more
sourceimpl<T: SimdRealField> Add<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Add<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the +
operator.
sourcefn add(self, rhs: DualQuaternion<T>) -> Self::Output
fn add(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the +
operation. Read more
sourceimpl<'b, T: SimdRealField> AddAssign<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> AddAssign<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn add_assign(&mut self, rhs: &'b DualQuaternion<T>)
fn add_assign(&mut self, rhs: &'b DualQuaternion<T>)
Performs the +=
operation. Read more
sourceimpl<T: SimdRealField> AddAssign<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> AddAssign<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn add_assign(&mut self, rhs: DualQuaternion<T>)
fn add_assign(&mut self, rhs: DualQuaternion<T>)
Performs the +=
operation. Read more
sourceimpl<T: SimdRealField> AsMut<[T; 8]> for DualQuaternion<T>
impl<T: SimdRealField> AsMut<[T; 8]> for DualQuaternion<T>
sourceimpl<T: SimdRealField> AsRef<[T; 8]> for DualQuaternion<T>
impl<T: SimdRealField> AsRef<[T; 8]> for DualQuaternion<T>
sourceimpl<T: Clone + Scalar> Clone for DualQuaternion<T>
impl<T: Clone + Scalar> Clone for DualQuaternion<T>
sourcefn clone(&self) -> DualQuaternion<T>
fn clone(&self) -> DualQuaternion<T>
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl<T: Debug + Scalar> Debug for DualQuaternion<T>
impl<T: Debug + Scalar> Debug for DualQuaternion<T>
sourceimpl<T: Scalar + Zero> Default for DualQuaternion<T>
impl<T: Scalar + Zero> Default for DualQuaternion<T>
sourceimpl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
fn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
fn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField> Div<T> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<T> for DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField> Div<T> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<T> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output
fn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the /
operator.
sourcefn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output
fn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output
Performs the /
operation. Read more
sourceimpl<'b, T: SimdRealField> DivAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
Performs the /=
operation. Read more
sourceimpl<T: SimdRealField> DivAssign<T> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<T> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn div_assign(&mut self, n: T)
fn div_assign(&mut self, n: T)
Performs the /=
operation. Read more
sourceimpl<T: SimdRealField> DivAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn div_assign(&mut self, rhs: UnitDualQuaternion<T>)
fn div_assign(&mut self, rhs: UnitDualQuaternion<T>)
Performs the /=
operation. Read more
sourceimpl<T: SimdRealField> Index<usize> for DualQuaternion<T>
impl<T: SimdRealField> Index<usize> for DualQuaternion<T>
sourceimpl<T: SimdRealField> IndexMut<usize> for DualQuaternion<T>
impl<T: SimdRealField> IndexMut<usize> for DualQuaternion<T>
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b> Mul<&'b DualQuaternion<f32>> for f32
impl<'b> Mul<&'b DualQuaternion<f32>> for f32
type Output = DualQuaternion<f32>
type Output = DualQuaternion<f32>
The resulting type after applying the *
operator.
sourceimpl<'b> Mul<&'b DualQuaternion<f64>> for f64
impl<'b> Mul<&'b DualQuaternion<f64>> for f64
type Output = DualQuaternion<f64>
type Output = DualQuaternion<f64>
The resulting type after applying the *
operator.
sourceimpl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
fn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField> Mul<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a UnitDualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField> Mul<DualQuaternion<T>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<DualQuaternion<T>> for UnitDualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: DualQuaternion<T>) -> Self::Output
fn mul(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl Mul<DualQuaternion<f32>> for f32
impl Mul<DualQuaternion<f32>> for f32
type Output = DualQuaternion<f32>
type Output = DualQuaternion<f32>
The resulting type after applying the *
operator.
sourceimpl Mul<DualQuaternion<f64>> for f64
impl Mul<DualQuaternion<f64>> for f64
type Output = DualQuaternion<f64>
type Output = DualQuaternion<f64>
The resulting type after applying the *
operator.
sourceimpl<T: SimdRealField> Mul<T> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<T> for DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField> Mul<T> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<T> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output
fn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the *
operator.
sourcefn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output
fn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output
Performs the *
operation. Read more
sourceimpl<'b, T: SimdRealField> MulAssign<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: &'b DualQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b DualQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<'b, T: SimdRealField> MulAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField> MulAssign<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: DualQuaternion<T>)
fn mul_assign(&mut self, rhs: DualQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField> MulAssign<T> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<T> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, n: T)
fn mul_assign(&mut self, n: T)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField> MulAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn mul_assign(&mut self, rhs: UnitDualQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitDualQuaternion<T>)
Performs the *=
operation. Read more
sourceimpl<T: SimdRealField> Neg for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Neg for DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<'a, T: SimdRealField> Neg for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Neg for &'a DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<T: SimdRealField> Normed for DualQuaternion<T>
impl<T: SimdRealField> Normed for DualQuaternion<T>
type Norm = T::SimdRealField
type Norm = T::SimdRealField
The type of the norm.
sourcefn norm(&self) -> T::SimdRealField
fn norm(&self) -> T::SimdRealField
Computes the norm.
sourcefn norm_squared(&self) -> T::SimdRealField
fn norm_squared(&self) -> T::SimdRealField
Computes the squared norm.
sourcefn unscale_mut(&mut self, n: Self::Norm)
fn unscale_mut(&mut self, n: Self::Norm)
Divides self
by n.
sourceimpl<T: SimdRealField> One for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> One for DualQuaternion<T> where
T::Element: SimdRealField,
sourceimpl<T: PartialEq + Scalar> PartialEq<DualQuaternion<T>> for DualQuaternion<T>
impl<T: PartialEq + Scalar> PartialEq<DualQuaternion<T>> for DualQuaternion<T>
sourcefn eq(&self, other: &DualQuaternion<T>) -> bool
fn eq(&self, other: &DualQuaternion<T>) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &DualQuaternion<T>) -> bool
fn ne(&self, other: &DualQuaternion<T>) -> bool
This method tests for !=
.
sourceimpl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq<DualQuaternion<T>> for DualQuaternion<T>
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq<DualQuaternion<T>> for DualQuaternion<T>
sourcefn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
sourcefn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
A test for equality that uses a relative comparison if the values are far apart.
sourcefn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
The inverse of RelativeEq::relative_eq
.
sourceimpl<'a, 'b, T: SimdRealField> Sub<&'b DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Sub<&'b DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the -
operator.
sourcefn sub(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn sub(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the -
operation. Read more
sourceimpl<'b, T: SimdRealField> Sub<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Sub<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the -
operator.
sourcefn sub(self, rhs: &'b DualQuaternion<T>) -> Self::Output
fn sub(self, rhs: &'b DualQuaternion<T>) -> Self::Output
Performs the -
operation. Read more
sourceimpl<'a, T: SimdRealField> Sub<DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Sub<DualQuaternion<T>> for &'a DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the -
operator.
sourcefn sub(self, rhs: DualQuaternion<T>) -> Self::Output
fn sub(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the -
operation. Read more
sourceimpl<T: SimdRealField> Sub<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Sub<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
type Output = DualQuaternion<T>
type Output = DualQuaternion<T>
The resulting type after applying the -
operator.
sourcefn sub(self, rhs: DualQuaternion<T>) -> Self::Output
fn sub(self, rhs: DualQuaternion<T>) -> Self::Output
Performs the -
operation. Read more
sourceimpl<'b, T: SimdRealField> SubAssign<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> SubAssign<&'b DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn sub_assign(&mut self, rhs: &'b DualQuaternion<T>)
fn sub_assign(&mut self, rhs: &'b DualQuaternion<T>)
Performs the -=
operation. Read more
sourceimpl<T: SimdRealField> SubAssign<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> SubAssign<DualQuaternion<T>> for DualQuaternion<T> where
T::Element: SimdRealField,
sourcefn sub_assign(&mut self, rhs: DualQuaternion<T>)
fn sub_assign(&mut self, rhs: DualQuaternion<T>)
Performs the -=
operation. Read more
sourceimpl<T1, T2> SubsetOf<DualQuaternion<T2>> for DualQuaternion<T1> where
T1: SimdRealField,
T2: SimdRealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<DualQuaternion<T2>> for DualQuaternion<T1> where
T1: SimdRealField,
T2: SimdRealField + SupersetOf<T1>,
sourcefn to_superset(&self) -> DualQuaternion<T2>
fn to_superset(&self) -> DualQuaternion<T2>
The inclusion map: converts self
to the equivalent element of its superset.
sourcefn is_in_subset(dq: &DualQuaternion<T2>) -> bool
fn is_in_subset(dq: &DualQuaternion<T2>) -> bool
Checks if element
is actually part of the subset Self
(and can be converted to it).
sourcefn from_superset_unchecked(dq: &DualQuaternion<T2>) -> Self
fn from_superset_unchecked(dq: &DualQuaternion<T2>) -> Self
Use with care! Same as self.to_superset
but without any property checks. Always succeeds.
sourcefn from_superset(element: &T) -> Option<Self>
fn from_superset(element: &T) -> Option<Self>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourceimpl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq<DualQuaternion<T>> for DualQuaternion<T>
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq<DualQuaternion<T>> for DualQuaternion<T>
sourceimpl<T: SimdRealField> Zero for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: SimdRealField> Zero for DualQuaternion<T> where
T::Element: SimdRealField,
impl<T: Copy + Scalar> Copy for DualQuaternion<T>
impl<T: Eq + Scalar> Eq for DualQuaternion<T>
impl<T: Scalar> StructuralEq for DualQuaternion<T>
impl<T: Scalar> StructuralPartialEq for DualQuaternion<T>
Auto Trait Implementations
impl<T> RefUnwindSafe for DualQuaternion<T> where
T: RefUnwindSafe,
impl<T> Send for DualQuaternion<T> where
T: Send,
impl<T> Sync for DualQuaternion<T> where
T: Sync,
impl<T> Unpin for DualQuaternion<T> where
T: Unpin,
impl<T> UnwindSafe for DualQuaternion<T> where
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more