Struct statrs::distribution::Triangular
source · [−]pub struct Triangular { /* private fields */ }
Expand description
Implements the Triangular distribution
Examples
use statrs::distribution::{Triangular, Continuous};
use statrs::statistics::Distribution;
let n = Triangular::new(0.0, 5.0, 2.5).unwrap();
assert_eq!(n.mean().unwrap(), 7.5 / 3.0);
assert_eq!(n.pdf(2.5), 5.0 / 12.5);
Implementations
sourceimpl Triangular
impl Triangular
sourcepub fn new(min: f64, max: f64, mode: f64) -> Result<Triangular>
pub fn new(min: f64, max: f64, mode: f64) -> Result<Triangular>
Constructs a new triangular distribution with a minimum of min
,
maximum of max
, and a mode of mode
.
Errors
Returns an error if min
, max
, or mode
are NaN
or ±INF
.
Returns an error if max < mode
, mode < min
, or max == min
.
Examples
use statrs::distribution::Triangular;
let mut result = Triangular::new(0.0, 5.0, 2.5);
assert!(result.is_ok());
result = Triangular::new(2.5, 1.5, 0.0);
assert!(result.is_err());
Trait Implementations
sourceimpl Clone for Triangular
impl Clone for Triangular
sourcefn clone(&self) -> Triangular
fn clone(&self) -> Triangular
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl Continuous<f64, f64> for Triangular
impl Continuous<f64, f64> for Triangular
sourcefn pdf(&self, x: f64) -> f64
fn pdf(&self, x: f64) -> f64
Calculates the probability density function for the triangular
distribution
at x
Formula
if x < min {
0
} else if min <= x <= mode {
2 * (x - min) / ((max - min) * (mode - min))
} else if mode < x <= max {
2 * (max - x) / ((max - min) * (max - mode))
} else {
0
}
sourcefn ln_pdf(&self, x: f64) -> f64
fn ln_pdf(&self, x: f64) -> f64
Calculates the log probability density function for the triangular
distribution
at x
Formula
ln( if x < min {
0
} else if min <= x <= mode {
2 * (x - min) / ((max - min) * (mode - min))
} else if mode < x <= max {
2 * (max - x) / ((max - min) * (max - mode))
} else {
0
} )
sourceimpl ContinuousCDF<f64, f64> for Triangular
impl ContinuousCDF<f64, f64> for Triangular
sourcefn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the triangular
distribution
at x
Formula
if x == min {
0
} if min < x <= mode {
(x - min)^2 / ((max - min) * (mode - min))
} else if mode < x < max {
1 - (max - min)^2 / ((max - min) * (max - mode))
} else {
1
}
sourcefn inverse_cdf(&self, p: T) -> K
fn inverse_cdf(&self, p: T) -> K
Due to issues with rounding and floating-point accuracy the default
implementation may be ill-behaved.
Specialized inverse cdfs should be used whenever possible.
Performs a binary search on the domain of cdf
to obtain an approximation
of F^-1(p) := inf { x | F(x) >= p }
. Needless to say, performance may
may be lacking. Read more
sourceimpl Debug for Triangular
impl Debug for Triangular
sourceimpl Distribution<f64> for Triangular
impl Distribution<f64> for Triangular
sourcefn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generate a random value of T
, using rng
as the source of randomness.
sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
sourceimpl Distribution<f64> for Triangular
impl Distribution<f64> for Triangular
sourcefn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the triangular distribution
Formula
(min^2 + max^2 + mode^2 - min * max - min * mode - max * mode) / 18
sourceimpl Max<f64> for Triangular
impl Max<f64> for Triangular
sourceimpl Median<f64> for Triangular
impl Median<f64> for Triangular
sourceimpl Min<f64> for Triangular
impl Min<f64> for Triangular
sourceimpl Mode<Option<f64>> for Triangular
impl Mode<Option<f64>> for Triangular
sourceimpl PartialEq<Triangular> for Triangular
impl PartialEq<Triangular> for Triangular
sourcefn eq(&self, other: &Triangular) -> bool
fn eq(&self, other: &Triangular) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &Triangular) -> bool
fn ne(&self, other: &Triangular) -> bool
This method tests for !=
.
impl Copy for Triangular
impl StructuralPartialEq for Triangular
Auto Trait Implementations
impl RefUnwindSafe for Triangular
impl Send for Triangular
impl Sync for Triangular
impl Unpin for Triangular
impl UnwindSafe for Triangular
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more