Struct statrs::distribution::StudentsT
source · [−]pub struct StudentsT { /* private fields */ }
Expand description
Implements the Student’s T distribution
Examples
use statrs::distribution::{StudentsT, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.mean().unwrap(), 0.0);
assert!(prec::almost_eq(n.pdf(0.0), 0.353553390593274, 1e-15));
Implementations
sourceimpl StudentsT
impl StudentsT
sourcepub fn new(location: f64, scale: f64, freedom: f64) -> Result<StudentsT>
pub fn new(location: f64, scale: f64, freedom: f64) -> Result<StudentsT>
Constructs a new student’s t-distribution with location location
,
scale scale
,
and freedom
freedom.
Errors
Returns an error if any of location
, scale
, or freedom
are NaN
.
Returns an error if scale <= 0.0
or freedom <= 0.0
Examples
use statrs::distribution::StudentsT;
let mut result = StudentsT::new(0.0, 1.0, 2.0);
assert!(result.is_ok());
result = StudentsT::new(0.0, 0.0, 0.0);
assert!(result.is_err());
sourcepub fn location(&self) -> f64
pub fn location(&self) -> f64
Returns the location of the student’s t-distribution
Examples
use statrs::distribution::StudentsT;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.location(), 0.0);
Trait Implementations
sourceimpl Continuous<f64, f64> for StudentsT
impl Continuous<f64, f64> for StudentsT
sourcefn pdf(&self, x: f64) -> f64
fn pdf(&self, x: f64) -> f64
Calculates the probability density function for the student’s
t-distribution
at x
Formula
Γ((v + 1) / 2) / (sqrt(vπ) * Γ(v / 2) * σ) * (1 + k^2 / v)^(-1 / 2 * (v
+ 1))
where k = (x - μ) / σ
, μ
is the location, σ
is the scale, v
is
the freedom,
and Γ
is the gamma function
sourcefn ln_pdf(&self, x: f64) -> f64
fn ln_pdf(&self, x: f64) -> f64
Calculates the log probability density function for the student’s
t-distribution
at x
Formula
ln(Γ((v + 1) / 2) / (sqrt(vπ) * Γ(v / 2) * σ) * (1 + k^2 / v)^(-1 / 2 *
(v + 1)))
where k = (x - μ) / σ
, μ
is the location, σ
is the scale, v
is
the freedom,
and Γ
is the gamma function
sourceimpl ContinuousCDF<f64, f64> for StudentsT
impl ContinuousCDF<f64, f64> for StudentsT
sourcefn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the student’s
t-distribution
at x
Formula
if x < μ {
(1 / 2) * I(t, v / 2, 1 / 2)
} else {
1 - (1 / 2) * I(t, v / 2, 1 / 2)
}
where t = v / (v + k^2)
, k = (x - μ) / σ
, μ
is the location,
σ
is the scale, v
is the freedom, and I
is the regularized
incomplete
beta function
sourcefn inverse_cdf(&self, x: f64) -> f64
fn inverse_cdf(&self, x: f64) -> f64
Calculates the inverse cumulative distribution function for the
Student’s T-distribution at x
sourceimpl Distribution<f64> for StudentsT
impl Distribution<f64> for StudentsT
sourcefn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
Generate a random value of T
, using rng
as the source of randomness.
sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
sourceimpl Distribution<f64> for StudentsT
impl Distribution<f64> for StudentsT
sourcefn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy for the student’s t-distribution
Formula
- ln(σ) + (v + 1) / 2 * (ψ((v + 1) / 2) - ψ(v / 2)) + ln(sqrt(v) * B(v / 2, 1 /
2))
where σ
is the scale, v
is the freedom, ψ
is the digamma function, and B
is the
beta function
impl Copy for StudentsT
impl StructuralPartialEq for StudentsT
Auto Trait Implementations
impl RefUnwindSafe for StudentsT
impl Send for StudentsT
impl Sync for StudentsT
impl Unpin for StudentsT
impl UnwindSafe for StudentsT
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more