Struct statrs::distribution::MultivariateNormal
source · [−]pub struct MultivariateNormal { /* private fields */ }
Expand description
Implements the Multivariate Normal distribution using the “nalgebra” crate for matrix operations
Examples
use statrs::distribution::{MultivariateNormal, Continuous};
use nalgebra::{DVector, DMatrix};
use statrs::statistics::{MeanN, VarianceN};
let mvn = MultivariateNormal::new(vec![0., 0.], vec![1., 0., 0., 1.]).unwrap();
assert_eq!(mvn.mean().unwrap(), DVector::from_vec(vec![0., 0.]));
assert_eq!(mvn.variance().unwrap(), DMatrix::from_vec(2, 2, vec![1., 0., 0., 1.]));
assert_eq!(mvn.pdf(&DVector::from_vec(vec![1., 1.])), 0.05854983152431917);
Implementations
sourceimpl MultivariateNormal
impl MultivariateNormal
Trait Implementations
sourceimpl Clone for MultivariateNormal
impl Clone for MultivariateNormal
sourcefn clone(&self) -> MultivariateNormal
fn clone(&self) -> MultivariateNormal
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl<'a> Continuous<&'a Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>, f64> for MultivariateNormal
impl<'a> Continuous<&'a Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>, f64> for MultivariateNormal
sourcefn pdf(&self, x: &'a DVector<f64>) -> f64
fn pdf(&self, x: &'a DVector<f64>) -> f64
Calculates the probability density function for the multivariate
normal distribution at x
Formula
(2 * π) ^ (-k / 2) * det(Σ) ^ (1 / 2) * e ^ ( -(1 / 2) * transpose(x - μ) * inv(Σ) * (x - μ))
where μ
is the mean, inv(Σ)
is the precision matrix, det(Σ)
is the determinant
of the covariance matrix, and k
is the dimension of the distribution
sourceimpl Debug for MultivariateNormal
impl Debug for MultivariateNormal
sourceimpl Distribution<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
impl Distribution<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
sourcefn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DVector<f64>
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> DVector<f64>
Samples from the multivariate normal distribution
Formula
L * Z + μ
where L
is the Cholesky decomposition of the covariance matrix,
Z
is a vector of normally distributed random variables, and
μ
is the mean vector
sourcefn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
Create an iterator that generates random values of T
, using rng
as
the source of randomness. Read more
sourceimpl Max<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
impl Max<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
sourceimpl MeanN<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
impl MeanN<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
sourceimpl Min<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
impl Min<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
sourceimpl Mode<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
impl Mode<Matrix<f64, Dynamic, Const<1_usize>, VecStorage<f64, Dynamic, Const<1_usize>>>> for MultivariateNormal
sourceimpl PartialEq<MultivariateNormal> for MultivariateNormal
impl PartialEq<MultivariateNormal> for MultivariateNormal
sourcefn eq(&self, other: &MultivariateNormal) -> bool
fn eq(&self, other: &MultivariateNormal) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &MultivariateNormal) -> bool
fn ne(&self, other: &MultivariateNormal) -> bool
This method tests for !=
.
sourceimpl VarianceN<Matrix<f64, Dynamic, Dynamic, VecStorage<f64, Dynamic, Dynamic>>> for MultivariateNormal
impl VarianceN<Matrix<f64, Dynamic, Dynamic, VecStorage<f64, Dynamic, Dynamic>>> for MultivariateNormal
impl StructuralPartialEq for MultivariateNormal
Auto Trait Implementations
impl RefUnwindSafe for MultivariateNormal
impl Send for MultivariateNormal
impl Sync for MultivariateNormal
impl Unpin for MultivariateNormal
impl UnwindSafe for MultivariateNormal
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more