Struct nalgebra::base::EuclideanNorm
source · [−]pub struct EuclideanNorm;
Expand description
Euclidean norm.
Trait Implementations
sourceimpl<T: SimdComplexField> Norm<T> for EuclideanNorm
impl<T: SimdComplexField> Norm<T> for EuclideanNorm
sourcefn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField where
R: Dim,
C: Dim,
S: Storage<T, R, C>,
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealField where
R: Dim,
C: Dim,
S: Storage<T, R, C>,
Apply this norm to the given matrix.
sourcefn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealField where
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealField where
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
Use the metric induced by this norm to compute the metric distance between the two given matrices.
Auto Trait Implementations
impl RefUnwindSafe for EuclideanNorm
impl Send for EuclideanNorm
impl Sync for EuclideanNorm
impl Unpin for EuclideanNorm
impl UnwindSafe for EuclideanNorm
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
sourcepub fn to_subset(&self) -> Option<SS>
pub fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
sourcepub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
sourcepub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
sourcepub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.