pub struct Structure<'a> { /* private fields */ }
Expand description

A wrapper around a syn::DeriveInput which provides utilities for creating custom derive trait implementations.

Implementations

Create a new Structure with the variants and fields from the passed-in DeriveInput.

Panics

This method will panic if the provided AST node represents an untagged union.

Create a new Structure with the variants and fields from the passed-in DeriveInput.

Unlike Structure::new, this method does not panic if the provided AST node represents an untagged union.

Returns a slice of the variants in this Structure.

Returns a mut slice of the variants in this Structure.

Returns a reference to the underlying syn AST node which this Structure was created from.

True if any variants were omitted due to a filter_variants call.

Runs the passed-in function once for each bound field, passing in a BindingInfo. and generating match arms which evaluate the returned tokens.

This method will ignore variants or fields which are ignored through the filter and filter_variant methods.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B(i32, i32),
        C(u32),
    }
};
let s = Structure::new(&di);

assert_eq!(
    s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),

    quote!{
        A::B(ref __binding_0, ref __binding_1,) => {
            { println!("{:?}", __binding_0) }
            { println!("{:?}", __binding_1) }
        }
        A::C(ref __binding_0,) => {
            { println!("{:?}", __binding_0) }
        }
    }.to_string()
);

Runs the passed-in function once for each bound field, passing in the result of the previous call, and a BindingInfo. generating match arms which evaluate to the resulting tokens.

This method will ignore variants or fields which are ignored through the filter and filter_variant methods.

If a variant has been ignored, it will return the init value.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B(i32, i32),
        C(u32),
    }
};
let s = Structure::new(&di);

assert_eq!(
    s.fold(quote!(0), |acc, bi| quote!(#acc + #bi)).to_string(),

    quote!{
        A::B(ref __binding_0, ref __binding_1,) => {
            0 + __binding_0 + __binding_1
        }
        A::C(ref __binding_0,) => {
            0 + __binding_0
        }
    }.to_string()
);

Runs the passed-in function once for each variant, passing in a VariantInfo. and generating match arms which evaluate the returned tokens.

This method will ignore variants and not bind fields which are ignored through the filter and filter_variant methods.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B(i32, i32),
        C(u32),
    }
};
let s = Structure::new(&di);

assert_eq!(
    s.each_variant(|v| {
        let name = &v.ast().ident;
        quote!(println!(stringify!(#name)))
    }).to_string(),

    quote!{
        A::B(ref __binding_0, ref __binding_1,) => {
            println!(stringify!(B))
        }
        A::C(ref __binding_0,) => {
            println!(stringify!(C))
        }
    }.to_string()
);

Filter the bindings created by this Structure object. This has 2 effects:

  • The bindings will no longer appear in match arms generated by methods on this Structure or its subobjects.

  • Impl blocks created with the bound_impl or unsafe_bound_impl method only consider type parameters referenced in the types of non-filtered fields.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B{ a: i32, b: i32 },
        C{ a: u32 },
    }
};
let mut s = Structure::new(&di);

s.filter(|bi| {
    bi.ast().ident == Some(quote::format_ident!("a"))
});

assert_eq!(
    s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),

    quote!{
        A::B{ a: ref __binding_0, .. } => {
            { println!("{:?}", __binding_0) }
        }
        A::C{ a: ref __binding_0, } => {
            { println!("{:?}", __binding_0) }
        }
    }.to_string()
);

Specify additional where predicate bounds which should be generated by impl-generating functions such as gen_impl, bound_impl, and unsafe_bound_impl.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

// Add an additional where predicate.
s.add_where_predicate(syn::parse_quote!(T: std::fmt::Display));

assert_eq!(
    s.bound_impl(quote!(krate::Trait), quote!{
        fn a() {}
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            impl<T, U> krate::Trait for A<T, U>
                where T: std::fmt::Display,
                      T: krate::Trait,
                      Option<U>: krate::Trait,
                      U: krate::Trait
            {
                fn a() {}
            }
        };
    }.to_string()
);

Specify which bounds should be generated by impl-generating functions such as gen_impl, bound_impl, and unsafe_bound_impl.

The default behaviour is to generate both field and generic bounds from type parameters.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

// Limit bounds to only generics.
s.add_bounds(AddBounds::Generics);

assert_eq!(
    s.bound_impl(quote!(krate::Trait), quote!{
        fn a() {}
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            impl<T, U> krate::Trait for A<T, U>
                where T: krate::Trait,
                      U: krate::Trait
            {
                fn a() {}
            }
        };
    }.to_string()
);

Filter the variants matched by this Structure object. This has 2 effects:

  • Match arms destructuring these variants will no longer be generated by methods on this Structure

  • Impl blocks created with the bound_impl or unsafe_bound_impl method only consider type parameters referenced in the types of fields in non-fitered variants.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B(i32, i32),
        C(u32),
    }
};

let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "B");

assert_eq!(
    s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),

    quote!{
        A::C(ref __binding_0,) => {
            { println!("{:?}", __binding_0) }
        }
        _ => {}
    }.to_string()
);

Remove the variant at the given index.

Panics

Panics if the index is out of range.

Updates the BindStyle for each of the passed-in fields by calling the passed-in function for each BindingInfo.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B(i32, i32),
        C(u32),
    }
};
let mut s = Structure::new(&di);

s.bind_with(|bi| BindStyle::RefMut);

assert_eq!(
    s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),

    quote!{
        A::B(ref mut __binding_0, ref mut __binding_1,) => {
            { println!("{:?}", __binding_0) }
            { println!("{:?}", __binding_1) }
        }
        A::C(ref mut __binding_0,) => {
            { println!("{:?}", __binding_0) }
        }
    }.to_string()
);

Updates the binding name for each fo the passed-in fields by calling the passed-in function for each BindingInfo.

The function will be called with the BindingInfo and its index in the enclosing variant.

The default name is __binding_{} where {} is replaced with an increasing number.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A {
        B{ a: i32, b: i32 },
        C{ a: u32 },
    }
};
let mut s = Structure::new(&di);

s.binding_name(|bi, i| bi.ident.clone().unwrap());

assert_eq!(
    s.each(|bi| quote!(println!("{:?}", #bi))).to_string(),

    quote!{
        A::B{ a: ref a, b: ref b, } => {
            { println!("{:?}", a) }
            { println!("{:?}", b) }
        }
        A::C{ a: ref a, } => {
            { println!("{:?}", a) }
        }
    }.to_string()
);

Returns a list of the type parameters which are refrenced in the types of non-filtered fields / variants.

Caveat

If the struct contains any macros in type position, all parameters will be considered bound. This is because we cannot determine which type parameters are bound by type macros.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T, i32),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "C");

assert_eq!(
    s.referenced_ty_params(),
    &[&quote::format_ident!("T")]
);

Adds an impl<> generic parameter. This can be used when the trait to be derived needs some extra generic parameters.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);
let generic: syn::GenericParam = syn::parse_quote!(X: krate::AnotherTrait);

assert_eq!(
    s.add_impl_generic(generic)
        .bound_impl(quote!(krate::Trait<X>),
        quote!{
                fn a() {}
        }
    ).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_X_FOR_A: () = {
            extern crate krate;
            impl<T, U, X: krate::AnotherTrait> krate::Trait<X> for A<T, U>
                where T : krate :: Trait < X >,
                      Option<U>: krate::Trait<X>,
                      U: krate::Trait<X>
            {
                fn a() {}
            }
        };
    }.to_string()
);

Add trait bounds for a trait with the given path for each type parmaeter referenced in the types of non-filtered fields.

Caveat

If the method contains any macros in type position, all parameters will be considered bound. This is because we cannot determine which type parameters are bound by type macros.

Configure whether to use const _ instead of a generated const name in code generated by gen_impl and bound_impl.

This syntax is only supported by rust 1.37, and later versions.

Defaults to false for backwards compatibility reasons.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    struct MyStruct;
};
let mut s = Structure::new(&di);

assert_eq!(
    s.underscore_const(true)
        .gen_impl(quote! { gen impl Trait for @Self { } })
        .to_string(),
    quote! {
        const _: () = {
            impl Trait for MyStruct { }
        };
    }
    .to_string()
);

assert_eq!(
    s.underscore_const(false)
        .gen_impl(quote! { gen impl Trait for @Self { } })
        .to_string(),
    quote! {
        #[allow(non_upper_case_globals)]
        const _DERIVE_Trait_FOR_MyStruct: () = {
            impl Trait for MyStruct { }
        };
    }
    .to_string()
);

NOTE: This methods’ features are superceded by Structure::gen_impl.

Creates an impl block with the required generic type fields filled in to implement the trait path.

This method also adds where clauses to the impl requiring that all referenced type parmaeters implement the trait path.

Hygiene and Paths

This method wraps the impl block inside of a const (see the example below). In this scope, the first segment of the passed-in path is extern crate-ed in. If you don’t want to generate that extern crate item, use a global path.

This means that if you are implementing my_crate::Trait, you simply write s.bound_impl(quote!(my_crate::Trait), quote!(...)), and for the entirety of the definition, you can refer to your crate as my_crate.

Caveat

If the method contains any macros in type position, all parameters will be considered bound. This is because we cannot determine which type parameters are bound by type macros.

Panics

Panics if the path string parameter is not a valid TraitBound.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "B");

assert_eq!(
    s.bound_impl(quote!(krate::Trait), quote!{
        fn a() {}
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            impl<T, U> krate::Trait for A<T, U>
                where Option<U>: krate::Trait,
                      U: krate::Trait
            {
                fn a() {}
            }
        };
    }.to_string()
);

NOTE: This methods’ features are superceded by Structure::gen_impl.

Creates an impl block with the required generic type fields filled in to implement the unsafe trait path.

This method also adds where clauses to the impl requiring that all referenced type parmaeters implement the trait path.

Hygiene and Paths

This method wraps the impl block inside of a const (see the example below). In this scope, the first segment of the passed-in path is extern crate-ed in. If you don’t want to generate that extern crate item, use a global path.

This means that if you are implementing my_crate::Trait, you simply write s.bound_impl(quote!(my_crate::Trait), quote!(...)), and for the entirety of the definition, you can refer to your crate as my_crate.

Caveat

If the method contains any macros in type position, all parameters will be considered bound. This is because we cannot determine which type parameters are bound by type macros.

Panics

Panics if the path string parameter is not a valid TraitBound.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "B");

assert_eq!(
    s.unsafe_bound_impl(quote!(krate::Trait), quote!{
        fn a() {}
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            unsafe impl<T, U> krate::Trait for A<T, U>
                where Option<U>: krate::Trait,
                      U: krate::Trait
            {
                fn a() {}
            }
        };
    }.to_string()
);

NOTE: This methods’ features are superceded by Structure::gen_impl.

Creates an impl block with the required generic type fields filled in to implement the trait path.

This method will not add any where clauses to the impl.

Hygiene and Paths

This method wraps the impl block inside of a const (see the example below). In this scope, the first segment of the passed-in path is extern crate-ed in. If you don’t want to generate that extern crate item, use a global path.

This means that if you are implementing my_crate::Trait, you simply write s.bound_impl(quote!(my_crate::Trait), quote!(...)), and for the entirety of the definition, you can refer to your crate as my_crate.

Panics

Panics if the path string parameter is not a valid TraitBound.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "B");

assert_eq!(
    s.unbound_impl(quote!(krate::Trait), quote!{
        fn a() {}
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            impl<T, U> krate::Trait for A<T, U> {
                fn a() {}
            }
        };
    }.to_string()
);
👎 Deprecated

NOTE: This methods’ features are superceded by Structure::gen_impl.

Creates an impl block with the required generic type fields filled in to implement the unsafe trait path.

This method will not add any where clauses to the impl.

Hygiene and Paths

This method wraps the impl block inside of a const (see the example below). In this scope, the first segment of the passed-in path is extern crate-ed in. If you don’t want to generate that extern crate item, use a global path.

This means that if you are implementing my_crate::Trait, you simply write s.bound_impl(quote!(my_crate::Trait), quote!(...)), and for the entirety of the definition, you can refer to your crate as my_crate.

Panics

Panics if the path string parameter is not a valid TraitBound.

Example
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "B");

assert_eq!(
    s.unsafe_unbound_impl(quote!(krate::Trait), quote!{
        fn a() {}
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        #[doc(hidden)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            unsafe impl<T, U> krate::Trait for A<T, U> {
                fn a() {}
            }
        };
    }.to_string()
);

Generate an impl block for the given struct. This impl block will automatically use hygiene tricks to avoid polluting the caller’s namespace, and will automatically add trait bounds for generic type parameters.

Syntax

This function accepts its arguments as a TokenStream. The recommended way to call this function is passing the result of invoking the quote! macro to it.

s.gen_impl(quote! {
    // You can write any items which you want to import into scope here.
    // For example, you may want to include an `extern crate` for the
    // crate which implements your trait. These items will only be
    // visible to the code you generate, and won't be exposed to the
    // consuming crate
    extern crate krate;

    // You can also add `use` statements here to bring types or traits
    // into scope.
    //
    // WARNING: Try not to use common names here, because the stable
    // version of syn does not support hygiene and you could accidentally
    // shadow types from the caller crate.
    use krate::Trait as MyTrait;

    // The actual impl block is a `gen impl` or `gen unsafe impl` block.
    // You can use `@Self` to refer to the structure's type.
    gen impl MyTrait for @Self {
        fn f(&self) { ... }
    }
})

The most common usage of this trait involves loading the crate the target trait comes from with extern crate, and then invoking a gen impl block.

Hygiene

This method tries to handle hygiene intelligenly for both stable and unstable proc-macro implementations, however there are visible differences.

The output of every gen_impl function is wrapped in a dummy const value, to ensure that it is given its own scope, and any values brought into scope are not leaked to the calling crate.

By default, the above invocation may generate an output like the following:

const _DERIVE_krate_Trait_FOR_Struct: () = {
    extern crate krate;
    use krate::Trait as MyTrait;
    impl<T> MyTrait for Struct<T> where T: MyTrait {
        fn f(&self) { ... }
    }
};

The Structure may also be confired with the [underscore_const] method to generate const _ instead.

const _: () = {
    extern crate krate;
    use krate::Trait as MyTrait;
    impl<T> MyTrait for Struct<T> where T: MyTrait {
        fn f(&self) { ... }
    }
};
Using the std crate

If you are using quote!() to implement your trait, with the proc-macro2/nightly feature, std isn’t considered to be in scope for your macro. This means that if you use types from std in your procedural macro, you’ll want to explicitly load it with an extern crate std;.

Absolute paths

You should generally avoid using absolute paths in your generated code, as they will resolve very differently when using the stable and nightly versions of proc-macro2. Instead, load the crates you need to use explictly with extern crate and

Trait Bounds

This method will automatically add trait bounds for any type parameters which are referenced within the types of non-ignored fields.

Additional type parameters may be added with the generics syntax after the impl keyword.

Type Macro Caveat

If the method contains any macros in type position, all parameters will be considered bound. This is because we cannot determine which type parameters are bound by type macros.

Errors

This function will generate a compile_error! if additional type parameters added by impl<..> conflict with generic type parameters on the original struct.

Panics

This function will panic if the input TokenStream is not well-formed.

Example Usage
let di: syn::DeriveInput = syn::parse_quote! {
    enum A<T, U> {
        B(T),
        C(Option<U>),
    }
};
let mut s = Structure::new(&di);

s.filter_variants(|v| v.ast().ident != "B");

assert_eq!(
    s.gen_impl(quote! {
        extern crate krate;
        gen impl krate::Trait for @Self {
            fn a() {}
        }
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            impl<T, U> krate::Trait for A<T, U>
            where
                Option<U>: krate::Trait,
                U: krate::Trait
            {
                fn a() {}
            }
        };
    }.to_string()
);

// NOTE: You can also add extra generics after the impl
assert_eq!(
    s.gen_impl(quote! {
        extern crate krate;
        gen impl<X: krate::OtherTrait> krate::Trait<X> for @Self
        where
            X: Send + Sync,
        {
            fn a() {}
        }
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        const _DERIVE_krate_Trait_X_FOR_A: () = {
            extern crate krate;
            impl<X: krate::OtherTrait, T, U> krate::Trait<X> for A<T, U>
            where
                X: Send + Sync,
                Option<U>: krate::Trait<X>,
                U: krate::Trait<X>
            {
                fn a() {}
            }
        };
    }.to_string()
);

// NOTE: you can generate multiple traits with a single call
assert_eq!(
    s.gen_impl(quote! {
        extern crate krate;

        gen impl krate::Trait for @Self {
            fn a() {}
        }

        gen impl krate::OtherTrait for @Self {
            fn b() {}
        }
    }).to_string(),
    quote!{
        #[allow(non_upper_case_globals)]
        const _DERIVE_krate_Trait_FOR_A: () = {
            extern crate krate;
            impl<T, U> krate::Trait for A<T, U>
            where
                Option<U>: krate::Trait,
                U: krate::Trait
            {
                fn a() {}
            }

            impl<T, U> krate::OtherTrait for A<T, U>
            where
                Option<U>: krate::OtherTrait,
                U: krate::OtherTrait
            {
                fn b() {}
            }
        };
    }.to_string()
);

Use add_bounds to change which bounds are generated.

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.