Struct crossbeam_channel::Receiver
source · [−]pub struct Receiver<T> { /* private fields */ }
Expand description
The receiving side of a channel.
Examples
use std::thread;
use std::time::Duration;
use crossbeam_channel::unbounded;
let (s, r) = unbounded();
thread::spawn(move || {
let _ = s.send(1);
thread::sleep(Duration::from_secs(1));
let _ = s.send(2);
});
assert_eq!(r.recv(), Ok(1)); // Received immediately.
assert_eq!(r.recv(), Ok(2)); // Received after 1 second.
Implementations
sourceimpl<T> Receiver<T>
impl<T> Receiver<T>
sourcepub fn try_recv(&self) -> Result<T, TryRecvError>
pub fn try_recv(&self) -> Result<T, TryRecvError>
Attempts to receive a message from the channel without blocking.
This method will either receive a message from the channel immediately or return an error if the channel is empty.
If called on a zero-capacity channel, this method will receive a message only if there happens to be a send operation on the other side of the channel at the same time.
Examples
use crossbeam_channel::{unbounded, TryRecvError};
let (s, r) = unbounded();
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
s.send(5).unwrap();
drop(s);
assert_eq!(r.try_recv(), Ok(5));
assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));
sourcepub fn recv(&self) -> Result<T, RecvError>
pub fn recv(&self) -> Result<T, RecvError>
Blocks the current thread until a message is received or the channel is empty and disconnected.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
Examples
use std::thread;
use std::time::Duration;
use crossbeam_channel::{unbounded, RecvError};
let (s, r) = unbounded();
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
s.send(5).unwrap();
drop(s);
});
assert_eq!(r.recv(), Ok(5));
assert_eq!(r.recv(), Err(RecvError));
sourcepub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
Waits for a message to be received from the channel, but only for a limited time.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
Examples
use std::thread;
use std::time::Duration;
use crossbeam_channel::{unbounded, RecvTimeoutError};
let (s, r) = unbounded();
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
s.send(5).unwrap();
drop(s);
});
assert_eq!(
r.recv_timeout(Duration::from_millis(500)),
Err(RecvTimeoutError::Timeout),
);
assert_eq!(
r.recv_timeout(Duration::from_secs(1)),
Ok(5),
);
assert_eq!(
r.recv_timeout(Duration::from_secs(1)),
Err(RecvTimeoutError::Disconnected),
);
sourcepub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
Waits for a message to be received from the channel, but only before a given deadline.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
Examples
use std::thread;
use std::time::{Instant, Duration};
use crossbeam_channel::{unbounded, RecvTimeoutError};
let (s, r) = unbounded();
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
s.send(5).unwrap();
drop(s);
});
let now = Instant::now();
assert_eq!(
r.recv_deadline(now + Duration::from_millis(500)),
Err(RecvTimeoutError::Timeout),
);
assert_eq!(
r.recv_deadline(now + Duration::from_millis(1500)),
Ok(5),
);
assert_eq!(
r.recv_deadline(now + Duration::from_secs(5)),
Err(RecvTimeoutError::Disconnected),
);
sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the channel is empty.
Note: Zero-capacity channels are always empty.
Examples
use crossbeam_channel::unbounded;
let (s, r) = unbounded();
assert!(r.is_empty());
s.send(0).unwrap();
assert!(!r.is_empty());
sourcepub fn is_full(&self) -> bool
pub fn is_full(&self) -> bool
Returns true
if the channel is full.
Note: Zero-capacity channels are always full.
Examples
use crossbeam_channel::bounded;
let (s, r) = bounded(1);
assert!(!r.is_full());
s.send(0).unwrap();
assert!(r.is_full());
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of messages in the channel.
Examples
use crossbeam_channel::unbounded;
let (s, r) = unbounded();
assert_eq!(r.len(), 0);
s.send(1).unwrap();
s.send(2).unwrap();
assert_eq!(r.len(), 2);
sourcepub fn capacity(&self) -> Option<usize>
pub fn capacity(&self) -> Option<usize>
If the channel is bounded, returns its capacity.
Examples
use crossbeam_channel::{bounded, unbounded};
let (_, r) = unbounded::<i32>();
assert_eq!(r.capacity(), None);
let (_, r) = bounded::<i32>(5);
assert_eq!(r.capacity(), Some(5));
let (_, r) = bounded::<i32>(0);
assert_eq!(r.capacity(), Some(0));
sourcepub fn iter(&self) -> Iter<'_, T>ⓘNotable traits for Iter<'_, T>impl<T> Iterator for Iter<'_, T> type Item = T;
pub fn iter(&self) -> Iter<'_, T>ⓘNotable traits for Iter<'_, T>impl<T> Iterator for Iter<'_, T> type Item = T;
A blocking iterator over messages in the channel.
Each call to next
blocks waiting for the next message and then returns it. However, if
the channel becomes empty and disconnected, it returns None
without blocking.
Examples
use std::thread;
use crossbeam_channel::unbounded;
let (s, r) = unbounded();
thread::spawn(move || {
s.send(1).unwrap();
s.send(2).unwrap();
s.send(3).unwrap();
drop(s); // Disconnect the channel.
});
// Collect all messages from the channel.
// Note that the call to `collect` blocks until the sender is dropped.
let v: Vec<_> = r.iter().collect();
assert_eq!(v, [1, 2, 3]);
sourcepub fn try_iter(&self) -> TryIter<'_, T>ⓘNotable traits for TryIter<'_, T>impl<T> Iterator for TryIter<'_, T> type Item = T;
pub fn try_iter(&self) -> TryIter<'_, T>ⓘNotable traits for TryIter<'_, T>impl<T> Iterator for TryIter<'_, T> type Item = T;
A non-blocking iterator over messages in the channel.
Each call to next
returns a message if there is one ready to be received. The iterator
never blocks waiting for the next message.
Examples
use std::thread;
use std::time::Duration;
use crossbeam_channel::unbounded;
let (s, r) = unbounded::<i32>();
thread::spawn(move || {
s.send(1).unwrap();
thread::sleep(Duration::from_secs(1));
s.send(2).unwrap();
thread::sleep(Duration::from_secs(2));
s.send(3).unwrap();
});
thread::sleep(Duration::from_secs(2));
// Collect all messages from the channel without blocking.
// The third message hasn't been sent yet so we'll collect only the first two.
let v: Vec<_> = r.try_iter().collect();
assert_eq!(v, [1, 2]);
sourcepub fn same_channel(&self, other: &Receiver<T>) -> bool
pub fn same_channel(&self, other: &Receiver<T>) -> bool
Returns true
if receivers belong to the same channel.
Examples
use crossbeam_channel::unbounded;
let (_, r) = unbounded::<usize>();
let r2 = r.clone();
assert!(r.same_channel(&r2));
let (_, r3) = unbounded();
assert!(!r.same_channel(&r3));
Trait Implementations
sourceimpl<'a, T> IntoIterator for &'a Receiver<T>
impl<'a, T> IntoIterator for &'a Receiver<T>
sourceimpl<T> IntoIterator for Receiver<T>
impl<T> IntoIterator for Receiver<T>
impl<T> RefUnwindSafe for Receiver<T>
impl<T: Send> Send for Receiver<T>
impl<T: Send> Sync for Receiver<T>
impl<T> UnwindSafe for Receiver<T>
Auto Trait Implementations
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more